2 resultados para Visuomotor dissociation

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.