3 resultados para Ventral hippocampus
em QSpace: Queen's University - Canada
Resumo:
Stress during early development produces lasting effects on psychopathological outcomes. The impact of prior intermittent, physical stress (IPS) during early-adolescence (PD 22-33) on anxiety-related behaviour of female rats was analyzed in adulthood. After behavioural testing, serotonergic innervation was evaluated using immunohistochemistry for the serotonin transporter (SERT) in the medial prefrontal cortex (mPFC) and ventral hippocampus. Administration of IPS (i.e., water immersion, elevated platform, foot shock) in early adolescence increased rats’ anxiety-like behaviour in the elevated plus-maze but had no effects in the shock-probe burying test. In the social interaction test, IPS decreased social interaction, and this effect was driven by selective decreases in the duration of playfighting with no evident changes in contact or investigative behaviour. Selective stress-induced increases in SERT-immunoreactive axon density were found in the infralimbic (IL) subregion of the mPFC, but not in the cingulate or prelimbic (PL) subregions. IPS in early adolescence did not affect serotonergic innervation profiles in any sub-fields of the ventral hippocampus. The findings confirm and extend on earlier evidence that stress during early adolescence promotes the emergence of an anxious phenotype, and provide novel evidence that these effects may be mediated, at least in part, by increased serotonergic innervation of the IL mPFC.
LEARNING IMPULSE CONTROL IN A NOVEL ANIMAL MODEL: SYNAPTIC, CELLULAR, AND PHARMACOLOGICAL SUBSTRATES
Resumo:
Impulse control, an executive process that restrains inappropriate actions, is impaired in numerous psychiatric conditions. This thesis reports three experiments that utilized a novel animal model of impulse control, the response inhibition (RI) task, to examine the substrates that underlie learning this task. In the first experiment, rats were trained to withhold responding on the RI task, and then euthanized for electrophysiological testing. Training in the RI task increased the AMPA/NMDA ratio at the synapses of pyramidal neurons in the prelimbic, but not infralimbic, region of the medial prefrontal cortex. This enhancement paralleled performance as subjects underwent acquisition and extinction of the inhibitory response. AMPA/NMDA was elevated only in neurons that project to the ventral striatum. Thus, this experiment identified a synaptic correlate of impulse control. In the second experiment, a separate group of rats were trained in the RI task prior to electrophysiological testing. Training in the RI task produced a decrease in membrane excitability in prelimbic, but not infralimbic, neurons as measured by maximal spiking evoked in response to increasing current injection. Importantly, this decrease was strongly correlated with successful inhibition in the task. Fortuitously, subjects trained in an operant control condition showed elevated infralimbic, but not prelimbic, excitability, which was produced by learning an anticipatory signal that predicted imminent reward availability. These experiments revealed two cellular correlates of performance, corresponding to learning two different associations under distinct task conditions. In the final experiment, rats were trained on the RI task under three conditions: Short (4-s), long (60-s), or unpredictable (1-s to 60-s) premature phases. These conditions produced distinct errors on the RI task. Interestingly, amphetamine increased premature responding in the short and long conditions, but decreased premature responding in the unpredictable condition. This dissociation may arise from interactions between amphetamine and underlying cognitive processes, such as attention, timing, and conditioned avoidance. In summary, this thesis showed that learning to inhibit a response produces distinct synaptic, cellular, and pharmacological changes. It is hoped that these advances will provide a starting point for future therapeutic interventions of disorders of impulse control.
Resumo:
Pyramidal neurons (PyNs) in ‘higher’ brain are highly susceptible to acute stroke injury yet ‘lower’ brain regions better survive global ischemia, presumably because of better residual blood flow. Here we show that projection neurons in ‘lower’ brain regions of hypothalamus and brainstem intrinsically resist acute stroke-like injury independent of blood flow in the brain slice. In contrast `higher` projection neurons in neocortex, hippocampus, striatum and thalamus are highly susceptible. In live brain slices from rat deprived of oxygen and glucose (OGD), we imaged anoxic depolarization (AD) as it propagates through these regions. AD, the initial electrophysiological event of stroke, is a depolarizing front that drains residual energy in compromised gray matter. The extent of AD reliably determines ensuing damage in higher brain, but using whole-cell recordings we found that all CNS neurons do not generate a robust AD. Higher neurons generate strong AD and show no functional recovery in contrast to neurons in hypothalamus and brainstem that generate a weak and gradual AD. Most dramatically, lower neurons recover their membrane potential, input resistance and spike amplitude when oxygen and glucose is restored, while higher neurons do not. Following OGD, new recordings could be acquired in all lower (but not higher) brain regions, with some neurons even withstanding multiple OGD exposure. Two-photon laser scanning microscopy confirmed neuroprotection in lower, but not higher gray matter. Specifically pyramidal neurons swell and lose their dendritic spines post-OGD, whereas neurons in hypothalamus and brainstem display no such injury. Exposure to the Na+/K+ ATPase inhibitor ouabain (100 μM), induces depolarization similar to OGD in all cell types tested. Moreover, elevated [K+]o evokes spreading depression (SD), a milder version of AD, in higher brain but not hypothalamus or brainstem so weak AD correlates with the inability to generate SD. In summary, overriding the Na+/K+ pump using OGD, ouabain or elevated [K+]o evokes steep and robust depolarization of higher gray matter. We show that this important regional difference can be largely accounted for by the intrinsic properties of the resident neurons and that Na+/K+ ATPase pump efficiency is a major determining factor generating strong or weak spreading depolarizations.