2 resultados para User-Computer Interface
em QSpace: Queen's University - Canada
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.