2 resultados para University of Michigan. College of Literature, Science and the Arts
em QSpace: Queen's University - Canada
Resumo:
All teachers participate in self-directed professional development (PD) at some point in their careers; however, the degree to which this participation takes place varies greatly from teacher to teacher and is influenced by the leadership of the school principal. The motivation behind why teachers choose to engage in PD is an important construct. Therefore, there is a need for better understanding of the leader’s role with respect to how and why teachers engage in self-directed professional development. The purpose of the research was to explore the elementary teachers’ motivation for and the school principal’s influence on their engagement in self-directed professional development. Three research questions guided this study: 1. What motivates teachers to engage in self-directed professional development? 2. What are the conditions necessary for promoting teachers’ engagement in self-directed professional development? 3. What are teachers’ perceptions of the principal’s role in supporting, fostering, encouraging, and sustaining the professional development of teachers? A qualitative research approach was adopted for this study. Six elementary teachers from one south-eastern Ontario school board, consisting of three novice and three more experienced teachers, provided their responses to a consistent complement of 14 questions. Their responses were documented via individual interviews, transcribed verbatim, and thematically analysed. The findings suggested that, coupled with the individual motivating influences, the culture of the school was found to be a conditional dynamic that either stimulated or dissuaded participation in self-directed PD. The school principal provided an additional catalyst or deterrence via relational disposition. When teachers felt their needs for competency, relatedness, and autonomy were satisfied, the conditions necessary to motivate teachers to engage in PD were fulfilled. A principal who personified the tenets of transformational leadership served to facilitate teachers’ inclinations to take on PD. A leadership style that was collaborative and trustful and allowed for personal autonomy was a dominant foundational piece that was critical for participant participation in self-directed PD. Finally, the principals were found to positively impact school climate by partaking in PD alongside teachers and ensuring there was a shared vision of the school so that teachers could tailor PD to parallel school interests.
Resumo:
Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.