2 resultados para UNIT CELL VARIATIONS

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main success of my thesis has been to establish the mechanism by which antifreeze proteins (AFPs) bind irreversibly to ice crystals, and hence prevent their growth. AFPs organize ice-like water on their ice-binding site, which then merges and freezes with the quasi-liquid layer of ice. This was revealed from studying the exceptionally large (ca. 1.5-MDa) Ca 2+-dependent AFP from the Antarctic bacterium Marinomonas primoryensis (MpAFP). The 34-kDa antifreeze- active region of MpAFP was predicted to fold as a novel Ca 2+-binding β-helix. Site-directed mutagenesis confirmed the model and demonstrated that its ice-binding site (IBS) consisted of solvent-exposed Thr and Asx parallel arrays on the Ca 2+-binding turns. The X-ray crystal structure of the antifreeze region was solved to a resolution of 1.7 Å. Two of the four molecules within the unit cell of the crystal had portions of their IBSs freely exposed to solvent. Identical clathrate-like cages of water molecules were present on each IBS. These waters were organized by the hydrophobic effect and anchored to the protein via hydrogen bonds. They matched the spacing of water molecules in an ice lattice, demonstrating that anchored clathrate waters bind AFPs to ice. This mechanism was extended to other AFPs including the globular type III AFP from fishes. Site-directed mutagenesis and a modified ice-etching technique demonstrated this protein uses a compound ice-binding site, comprised of two flat and relatively hydrophobic surfaces, to bind at least two planes of ice. Reinvestigation of several crystal structures of type III AFP identified anchored clathrate waters on the solvent-exposed portion of its compound IBS that matched the spacing of waters on the primary prism plane of ice. Ice nucleation proteins (INPs), which can raise the temperature at which ice forms in solution to just slightly below 0oC, have the opposite effect to AFPs. A novel dimeric β-helical model was proposed for the INP produced by the bacterium Pseudomonas borealis. Molecular dynamics simulations showed that INPs are also capable of ordering water molecules into an ice- like lattice. However, their multimerization brings together sufficient ordered waters to form an ice nucleus and initiate freezing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tourmaline from a gem-quality deposit in the Grenville province has been studied with X-ray diffraction, visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, electron microprobe and optical measurements. The tourmaline is found within tremolite-rich calc-silicate pods hosted in marble of the Central Metasedimentary Belt. The crystals are greenish-greyish-brown and have yielded facetable material up to 2.09 carats in size. Using the classification of Henry et al. 2011 the tourmaline is classified as a dravite, with a representative formula shown to be (Na0.73Ca0.2380.032)(Mg2+2.913Fe2+0.057Ti4+0.030) (Al3+5.787Fe3+0.017Mg2+0.14)(Si6.013O18)(BO3)3(OH)3((OH,O)0.907F0.093). Rietveld analysis of powder diffraction data gives a = 15.9436(8) Å, c = 7.2126(7) Å and a unit cell volume of 1587.8 Å3. A polished thin section was cut perpendicular to the c-axis of one tourmaline crystal, which showed zoning from a dark brown core into a lighter rim into a thin darker rim and back into lighter zonation. Through the geochemical data, three key stages of crystal growth can be seen within this thin section. The first is the core stage which occurs from the dark core to the first colourless zone; the second is from this colourless zone increasing in brown colour to the outer limit before a sudden absence of colour is noted; the third is a sharp change from the end of the second and is entirely colourless. These events are the result of metamorphism and hydrothermal fluids resulting from nearby felsic intrusive plutons. Scanning electron microscope, and electron microprobe traverses across this cross-section revealed that the green colour is the result of iron present throughout the system while the brown colour is correlated with titanium content. Crystal inclusions in the tourmaline of chlorapatite, and zircon were identified by petrographic analysis and confirmed using scanning electron microscope data and occur within the third stage of formation.