2 resultados para The measurement and interpretation of health inequalities
em QSpace: Queen's University - Canada
Resumo:
When we study the variables that a ffect survival time, we usually estimate their eff ects by the Cox regression model. In biomedical research, e ffects of the covariates are often modi ed by a biomarker variable. This leads to covariates-biomarker interactions. Here biomarker is an objective measurement of the patient characteristics at baseline. Liu et al. (2015) has built up a local partial likelihood bootstrap model to estimate and test this interaction e ffect of covariates and biomarker, but the R code developed by Liu et al. (2015) can only handle one variable and one interaction term and can not t the model with adjustment to nuisance variables. In this project, we expand the model to allow adjustment to nuisance variables, expand the R code to take any chosen interaction terms, and we set up many parameters for users to customize their research. We also build up an R package called "lplb" to integrate the complex computations into a simple interface. We conduct numerical simulation to show that the new method has excellent fi nite sample properties under both the null and alternative hypothesis. We also applied the method to analyze data from a prostate cancer clinical trial with acid phosphatase (AP) biomarker.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.