3 resultados para TRYPTOPHAN SIDE-CHAINS

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) are produced by a variety of organisms to either protect them from freezing or help them tolerate being frozen. Recent structural work has shown that AFPs bind to ice using ordered surface waters on a particular surface of the protein called the ice-binding site (IBS). These 'anchored clathrate' waters fuse to particular planes of an ice crystal and hence irreversibly bind the AFP to its ligand. An AFP isolated from the perennial ryegrass, Lolium perenne (LpAFP) was previously modelled as a right-handed beta helix with two proposed IBSs. Steric mutagenesis, where small side chains were replaced with larger ones, determined that only one of the putative IBSs was responsible for binding ice. The mutagenesis work also partly validated the fold of the computer-generated model of this AFP. In order to determine the structure of the protein, LpAFP was crystallized and solved to 1.4 Å resolution. The protein folds as an untwisted left-handed beta-helix, of opposite handedness to the model. The IBS identified by mutagenesis is remarkably flat, but less regular than the IBS of most other AFPs. Furthermore, several of the residues constituting the IBS are in multiple conformations. This irregularity may explain why LpAFP causes less thermal hysteresis than many other AFPs. Its imperfect IBS is also argued to be responsible for LpAFP's heightened ice-recrystallization inhibition activity. The structure of LpAFP is the first for a plant AFP and for a protein responsible for providing freeze tolerance rather than freeze resistance. To help understand what constitutes an IBS, a non-ice-binding homologue of type III AFP, sialic acid synthase (SAS), was engineered for ice binding. Point mutations were made to the germinal IBS of SAS to mimic key features seen in type III AFP. The crystal structures of some of the mutant proteins showed that the potential IBS became less charged and flatter as the mutations progressed, and ice affinity was gained. This proof-of-principle study highlights some of the difficulties in AFP engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As human populations and resource consumption increase, it is increasingly important to monitor the quality of our environment. While laboratory instruments offer useful information, portable, easy to use sensors would allow environmental analysis to occur on-site, at lower cost, and with minimal operator training. We explore the synthesis, modification, and applications of modified polysiloxane in environmental sensing. Multiple methods of producing modified siloxanes were investigated. Oligomers were formed by using functionalized monomers, producing siloxane materials containing silicon hydride, methyl, and phenyl side chains. Silicon hydride-functionalized oligomers were further modified by hydrosilylation to incorporate methyl ester and naphthyl side chains. Modifications to the siloxane materials were also carried out using post-curing treatments. Methyl ester-functionalized siloxane was incorporated into the surface of a cured poly(dimethylsiloxane) film by siloxane equilibration. The materials containing methyl esters were hydrolyzed to reveal carboxylic acids, which could later be used for covalent protein immobilization. Finally, the siloxane surfaces were modified to incorporate antibodies by covalent, affinity, and adsorption-based attachment. These modifications were characterized by a variety of methods, including contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, dye labels, and 1H nuclear magnetic resonance spectroscopy. The modified siloxane materials were employed in a variety of sensing schemes. Volatile organic compounds were detected using methyl, phenyl, and naphthyl-functionalized materials on a Fabry-Perot interferometer and a refractometer. The Fabry-Perot interferometer was found to detect the analytes upon siloxane extraction by deformation of the Bragg reflectors. The refractometer was used to determine that naphthyl-functionalized siloxanes had elevated refractive indices, rendering these materials more sensitive to some analytes. Antibody-modified siloxanes were used to detect biological analytes through a solid phase microextraction-mediated enzyme linked immunosorbent assay (SPME ELISA). The SPME ELISA was found to have higher analyte sensitivity compared to a conventional ELISA system. The detection scheme was used to detect Escherichia coli at 8500 CFU/mL. These results demonstrate the variety of methods that can be used to modify siloxanes and the wide range of applications of modified siloxanes has been demonstrated through chemical and biological sensing schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this thesis was to prepare medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) nanoparticle suspensions at high solids content (≥ 10 % w/v). A two-stage emulsification-solvent evaporation process was employed to produce poly-3-hydroxydecanoate (PHD) suspensions. The formulation and processing conditions including ultrasonication time and amplitude, selection of solvent, and selection of surfactants and their concentrations were investigated to make concentrated suspensions (10 and 30 % (w/v)) of PHD with particles less than 300 nm. Among the ionic surfactants tested to stabilize the suspension, the anionic, sodium dodecyl sulphate (SDS), and the cationic, dodecyltrimethylammonium bromide (DTAB) surfactants produced the smallest particle sizes (~100 nm). However, more stabilized nanoparticles were obtained when the ionic surfactant, SDS, was combined with any of the non-ionic surfactants tested, with polyoxyethylene octyl phenyl ether (Triton X-100) or polyoxyethylene (20) sorbitan monooleate (Tween 80) resulting in a slight increase in zeta potential over 30 days while the zeta potential with other non-ionic surfactants decreased. Mcl-PHA containing 11 and 18 % of carboxyl groups was synthesized via free radical addition reaction of 11-mercaptoundecanoic acid to the pendant double bonds of unsaturated poly-3-hydroxynonanoate (PHNU). Colloidal suspensions prepared by ultrasonication needed a surfactant to maintain stability, even at 0.4 % solids of mcl-PHA containing 11 % carboxylation (PHNC-1) unlike the stable suspensions prepared without surfactants by the titration method. Similar particle sizes (155.6 ± 8.4 to 163.4 ± 11.3 nm) and polydispersity indices (0.42 ± 0.03 to 0.49 ± 0.04) were obtained when several non-ionic surfactants were tested to minimize particle agglomeration, with the smallest particles obtained with Triton X-100. When Triton X-100 was combined with a variety of ionic surfactants, smaller nanoparticles (97.1 ± 1.1 to 121.7 ± 5.7 nm) with a narrower particle size distribution (0.21 ± 0.001 to 0.25 ± 0.003) were produced. The SDS and Triton X-100 combination was chosen to evaluate other mcl-PHAs at 10 % (w/v) solids content. Slightly smaller nanoparticles were formed with carboxylated mcl-PHAs compared to mcl-PHAs having aliphatic pendant side chains. Mcl-PHA consisting of 18 % carboxylation (PHNC-2) formed a much smaller nanoparticles and higher zeta potential.