1 resultado para TOROIDAL GEOMETRY
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (115)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (43)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (52)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (10)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (28)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (67)
- Queensland University of Technology - ePrints Archive (176)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (2)
- Universitat de Girona, Spain (3)
- Université de Montréal, Canada (1)
- University of Michigan (163)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
Resumo:
Let $M$ be a compact, oriented, even dimensional Riemannian manifold and let $S$ be a Clifford bundle over $M$ with Dirac operator $D$. Then \[ \textsc{Atiyah Singer: } \quad \text{Ind } \mathsf{D}= \int_M \hat{\mathcal{A}}(TM)\wedge \text{ch}(\mathcal{V}) \] where $\mathcal{V} =\text{Hom}_{\mathbb{C}l(TM)}(\slashed{\mathsf{S}},S)$. We prove the above statement with the means of the heat kernel of the heat semigroup $e^{-tD^2}$. The first outstanding result is the McKean-Singer theorem that describes the index in terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local geometric information. Moreover, if we use the asymptotic expansion of the kernel we will see that in the computation of the index only one term matters. The Berezin formula tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at the end, Getzler calculus enables us to find the integral of these top parts in terms of characteristic classes.