2 resultados para Structural Change
em QSpace: Queen's University - Canada
Resumo:
During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile.
Resumo:
Introspection is the process by which individuals question their attitudes; either questioning why they hold their attitudes (Why introspection), or how they feel about a particular attitude object (How introspection). Previous research has suggested that Why-introspection induces attitude change, and that Why and How introspection influence attitude-behaviour consistency,persuasion, and other effects. Generally, psychologists have assumed that affective and cognitive attitude bases are the mechanism by which introspection leads to these effects. Leading perspectives originating from these findings suggest that either Why introspection changes the content of cognitive attitude bases (the skewness hypothesis), or increases the salience of cognitive attitude bases (the dominance hypothesis); whereas How introspection may increase the salience of affective attitude bases (another part of the dominance hypothesis). However, direct evidence for these mechanisms is lacking, and the distinction between structural and meta bases has not been considered. Two studies investigated this gap in the existing literature. Both studies measured undergraduate students’ attitudes and attitude bases (both structural and meta, affective and cognitive) before and after engaging in an introspection manipulation (Why introspection / How introspection / control), and after reading a (affective / cognitive) persuasive passage about the attitude object. No evidence was found supporting either the skewness or dominance hypotheses. Furthermore, previous introspection effects were not replicated in the present data. Possible reasons for these null findings are proposed, and several unexpected effects are examined.