3 resultados para Steamboats -- Great Lakes (North America) -- History.
em QSpace: Queen's University - Canada
Resumo:
This research explores whether civil society organizations (CSOs) can contribute to more effectively regulating the working conditions of temporary migrant farmworkers in North America. This dissertation unfolds in five parts. The first part of the dissertation sets out the background context. The context includes the political economy of agriculture and temporary migrant labour more broadly. It also includes the political economy of the legal regulations that govern immigration and work relations. The second part of the research builds an analytical model for studying the operation of CSOs active in working with the migrant farmworker population. The purpose of the analytical framework is to make sense of real-world examples by providing categories for analysis and a means to get at the channels of influence that CSOs utilize to achieve their aims. To this end, the model incorporates the insights from three significant bodies of literature—regulatory studies, labour studies, and economic sociology. The third part of the dissertation suggests some key strategic issues that CSOs should consider when intervening to assist migrant farmworkers, and also proposes a series of hypotheses about how CSOs can participate in the regulatory process. The fourth part probes and extends these hypotheses by empirically investigating the operation of three CSOs that are currently active in assisting migrant farm workers in North America: the Agricultural Workers Alliance (Canada), Global Workers’ Justice Alliance (USA), and the Coalition of Immokalee Workers (USA). The fifth and final part draws together lessons from the empirical work and concluded that CSOs can fill gaps left by the waning power of actors, such as trade unions and labour inspectorates, as well as act in ways that these traditional actors can not.
Resumo:
Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.