2 resultados para Socio-technical systems
em QSpace: Queen's University - Canada
Resumo:
There is an abundance of research that examines disability and technology in the context of computers and the Internet, however few have examined disability and mobile devices. Also largely absent from existing literature are the voices of disabled people themselves. This dissertation draws upon science and technology studies (STS) and disability studies to address these gaps by conducting in-depth qualitative research that examines disabled people’s experiences using smartphones and tablets. At its core, this dissertation aims to provide insight on the following: 1) an understanding of how disability is perceived in the digital age and the subjective meanings of access, inclusion and equality; 2) the ways in which mobile devices impact the lived experience of disability; and 3) how perspectives in disability studies and STS can be applied to understand the relationship between the body, disability and technology. The empirical contribution of this research draws from participant diaries and interviews with disabled people, as well as from open-ended questionnaires completed by mobile app developers. The concept of ‘subjectivities of disability’ is introduced to refer to the uniquely personal and individual experience of disability. Findings reveal that mobile device use amongst disabled people redefines their subjectivities of disability through socio-technical interactions whereby disabled people use their devices in ways that are integrated into their everyday lives and positively shapes how they view themselves in relation to their experience of disability. The responses from app developers reveal that there is a place for disability in the mobile market and that disabled people play a key role in making apps accessible. The data suggests that mobile devices facilitate access, inclusion and equality by integrating the body in ways that recognize and accommodate diversity. The results furthermore make it clear that the interaction between disabled people and mobile devices takes on an embodied and social characteristic. This research concludes that both on an individual level and collectively, disabled people are engaging with digital artifacts in ways that promote agency and independence as well as reshaping how disability is experienced and perceived in the digital age.
Resumo:
Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.