3 resultados para Ship based meteorological sensor

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The map representation of an environment should be selected based on its intended application. For example, a geometrically accurate map describing the Euclidean space of an environment is not necessarily the best choice if only a small subset its features are required. One possible subset is the orientations of the flat surfaces in the environment, represented by a special parameterization of normal vectors called axes. Devoid of positional information, the entries of an axis map form a non-injective relationship with the flat surfaces in the environment, which results in physically distinct flat surfaces being represented by a single axis. This drastically reduces the complexity of the map, but retains important information about the environment that can be used in meaningful applications in both two and three dimensions. This thesis presents axis mapping, which is an algorithm that accurately and automatically estimates an axis map of an environment based on sensor measurements collected by a mobile platform. Furthermore, two major applications of axis maps are developed and implemented. First, the LiDAR compass is a heading estimation algorithm that compares measurements of axes with an axis map of the environment. Pairing the LiDAR compass with simple translation measurements forms the basis for an accurate two-dimensional localization algorithm. It is shown that this algorithm eliminates the growth of heading error in both indoor and outdoor environments, resulting in accurate localization over long distances. Second, in the context of geotechnical engineering, a three-dimensional axis map is called a stereonet, which is used as a tool to examine the strength and stability of a rock face. Axis mapping provides a novel approach to create accurate stereonets safely, rapidly, and inexpensively compared to established methods. The non-injective property of axis maps is leveraged to probabilistically describe the relationships between non-sequential measurements of the rock face. The automatic estimation of stereonets was tested in three separate outdoor environments. It is shown that axis mapping can accurately estimate stereonets while improving safety, requiring significantly less time and effort, and lowering costs compared to traditional and current state-of-the-art approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mach-Zehnder and Michelson interferometers using core-offset attenuators were demonstrated. As the relative offset direction of the two attenuators in the Mach-Zehnder interferometer can significantly affect the extinction ratio of the interference pattern, single core-offset attenuator-based sensors appear more robust and repeatable. A novel fiber Michelson interferometer refractive index (RI) sensor was subsequently realized by a single core-offset attenuator and a layer of ~ 500-nm gold coating. The device had a minimum insertion loss of 0.01 dB and maximum extinction ratio over 9 dB. The sensitivity (0.333 nm) of the new sensor to its surrounding RI change (0.01) was found to be comparable to that (0.252 nm) of an identical long period gratings pair Mach-Zehnder interferometric sensor, and its ease of fabrication makes it a low-cost alternative to existing sensing applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A chemical sensor based on a coated long-period grating has been prepared and characterized. Designer coatings based on polydimethylsiloxane were prepared by the incorporation of diphenylsiloxane and titanium cross-linker in order to provide enhanced sensitivity for a variety of key environmental pollutants and optimal refractive index of the coating. Upon microextraction of the analyte into the polymer matrix, an increase in the refractive index of the coating resulted in a change in the attenuation spectrum of the long-period grating. The grating was interrogated using ring-down detection as a means to amplify the optical loss and to gain stability against misalignment and power fluctuations. Chemical differentiation of cyclohexane and xylene was achieved and a detection limit of 300 ppm of xylene vapour was realized.