1 resultado para Sensor measurements
em QSpace: Queen's University - Canada
Resumo:
The map representation of an environment should be selected based on its intended application. For example, a geometrically accurate map describing the Euclidean space of an environment is not necessarily the best choice if only a small subset its features are required. One possible subset is the orientations of the flat surfaces in the environment, represented by a special parameterization of normal vectors called axes. Devoid of positional information, the entries of an axis map form a non-injective relationship with the flat surfaces in the environment, which results in physically distinct flat surfaces being represented by a single axis. This drastically reduces the complexity of the map, but retains important information about the environment that can be used in meaningful applications in both two and three dimensions. This thesis presents axis mapping, which is an algorithm that accurately and automatically estimates an axis map of an environment based on sensor measurements collected by a mobile platform. Furthermore, two major applications of axis maps are developed and implemented. First, the LiDAR compass is a heading estimation algorithm that compares measurements of axes with an axis map of the environment. Pairing the LiDAR compass with simple translation measurements forms the basis for an accurate two-dimensional localization algorithm. It is shown that this algorithm eliminates the growth of heading error in both indoor and outdoor environments, resulting in accurate localization over long distances. Second, in the context of geotechnical engineering, a three-dimensional axis map is called a stereonet, which is used as a tool to examine the strength and stability of a rock face. Axis mapping provides a novel approach to create accurate stereonets safely, rapidly, and inexpensively compared to established methods. The non-injective property of axis maps is leveraged to probabilistically describe the relationships between non-sequential measurements of the rock face. The automatic estimation of stereonets was tested in three separate outdoor environments. It is shown that axis mapping can accurately estimate stereonets while improving safety, requiring significantly less time and effort, and lowering costs compared to traditional and current state-of-the-art approaches.