2 resultados para Semi-continuous process

em QSpace: Queen's University - Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commodification of natural resources and the pursuit of continuous growth has resulted in environmental degradation, depletion, and disparity in access to these life-sustaining resources, including water. Utility-based objectification and exploitation of water in some societies has brought us to the brink of crisis through an apathetic disregard for present and future generations. The ongoing depletion and degradation of the world’s water sources, coupled with a reliance on Western knowledge and the continued omission of Indigenous knowledge to manage our relationship with water has unduly burdened many, but particularly so for Indigenous communities. The goal of my thesis research is to call attention to and advance the value and validity of using both Indigenous and Western knowledge systems (also known as Two-Eyed Seeing) in water research and management to better care for water. To achieve this goal, I used a combined systematic and realist review method to identify and synthesize the peer-reviewed, integrative water literature, followed by semi-structured interviews with first authors of the exemplars from the included literature to identify the challenges and insights that researchers have experienced in conducting integrative water research. Findings suggest that these authors recognize that many previous attempts to integrate Indigenous knowledges have been tokenistic rather than meaningful, and that new methods for knowledge implementation are needed. Community-based participatory research methods, and the associated tenets of balancing power, fostering trust, and community ownership over the research process, emerged as a pathway towards the meaningful implementation of Indigenous and Western knowledge systems. Data also indicate that engagement and collaborative governance structures developed from a position of mutual respect are integral to the realization of a given project. The recommendations generated from these findings offer support for future Indigenous-led research and partnerships through the identification and examination of approaches that facilitate the meaningful implementation of Indigenous and Western knowledge systems in water research and management. Asking Western science questions and seeking Indigenous science solutions does not appear to be working; instead, the co-design of research projects and asking questions directed at the problem rather than the solution better lends itself to the strengths of Indigenous science.