4 resultados para Science education|Curriculum development

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metacognition is the understanding and control of cognitive processes. Students with high levels of metacognition achieve greater academic success. The purpose of this mixed-methods study was to examine elementary teachers’ beliefs about metacognition and integration of metacognitive practices in science. Forty-four teachers were recruited through professional networks to complete a questionnaire containing open-ended questions (n = 44) and Likert-type items (n = 41). Five respondents were selected to complete semi-structured interviews informed by the questionnaire. The selected interview participants had a minimum of three years teaching experience and demonstrated a conceptual understanding of metacognition. Statistical tests (Pearson correlation, t-tests, and multiple regression) on quantitative data and thematic analysis of qualitative data indicated that teachers largely understood metacognition but had some gaps in their understanding. Participants’ reported actions (teaching practices) and beliefs differed according to their years of experience but not gender. Hierarchical multiple regression demonstrated that the first block of gender and experience was not a significant predictor of teachers' metacognitive actions, although experience was a significant predictor by itself. Experience was not a significant predictor once teachers' beliefs were added. The majority of participants indicated that metacognition was indeed appropriate for elementary students. Participants consistently reiterated that students’ metacognition developed with practice, but required explicit instruction. A lack of consensus remained around the domain specificity of metacognition. More specifically, the majority of questionnaire respondents indicated that metacognitive strategies could not be used across subject domains, whereas all interviewees indicated that they used strategies across subjects. Metacognition was integrated frequently into Ontario elementary classrooms; however, metacognition was integrated less frequently in science lessons. Lastly, participants used a variety of techniques to integrate metacognition into their classrooms. Implications for practice include the need for more professional development aimed at integrating metacognition into science lessons at both the Primary and Junior levels. Further, teachers could benefit from additional clarification on the three main components of metacognition and the need to integrate all three to successfully develop students’ metacognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Current physical activity levels among children and youth are alarmingly low; a mere 7% of children and youth are meeting the Canadian Physical Activity Guidelines (Colley et al., 2011), which means that the vast majority of this population is at risk of developing major health problems in adulthood (Janssen & Leblanc, 2010). These high inactivity rates may be related to suboptimal experiences in sport and physical activity stemming from a lack of competence and confidence (Lubans, Morgan, Cliff, Barnett, & Okely, 2010). Developing a foundation of physical literacy can encourage and maintain lifelong physical activity, yet this does not always occur naturally as a part of human growth (Hardman, 2011). An ideal setting to foster the growth and development of physical literacy is physical education class. Physical education class can offer all children and youth an equal opportunity to learn and practice the skills needed to be active for life (Hardman, 2011). Elementary school teachers are responsible for delivering the physical education curriculum, and it is important to understand their will and capacity as the implementing agents of physical literacy development curriculum (McLaughlin, 1987). Purpose: The purpose of this study was to explore the physical literacy component of the 2015 Ontario Health and Physical Education curriculum policy through the eyes of key informants, and to explore the resources available for the implementation of this new policy. Methods: Qualitative interviews were conducted with seven key informants of the curriculum policy development, including two teachers. In tandem with the interviews, a resource inventory and curriculum review were conducted to assess the content and availability of physical literacy resources. All data were analyzed through the lens of Hogwood and Gunn’s (1984) 10 preconditions for policy implementation. Results: Participants discussed how implementation is affected by: accountability, external capacity, internal capacity, awareness and understanding of physical literacy, implementation expertise, and policy climate. Discussion: Participants voiced similar opinions on most issues, and the overall lack of attention given to physical education programs in schools will continue to be a major dilemma when trying to combat such high physical inactivity levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drawing upon critical, communications, and educational theories, this thesis develops a novel framing of the problem of social risk in the extractive sector, as it relates to the building of respectful relationships with indigenous peoples. Building upon Bakhtin’s dialogism, the thesis demonstrates the linkage of this aspect of social risk to professional education, and specifically, to the undergraduate mining engineering curriculum, and develops a framework for the development of skills related to intercultural competence in the education of mining engineers. The knowledge of social risk, as well as the level of intercultural competence, of students in the mining engineering program, is investigated through a mixture of surveys and focus groups – as is the impact of specific learning interventions. One aspect of this investigation is whether development of these attributes alters graduates’ conception of their identity as mining engineers, i.e. the range and scope of responsibilities, and understanding of to whom responsibilities are owed, and their role in building trusting relationships with communities. Survey results demonstrate that student openness to the perspectives of other cultures increases with exposure to the second year curriculum. Students became more knowledgeable about social dimensions of responsible mining, but not about cultural dimensions. Analysis of focus group data shows that students are highly motivated to improve community perspectives and acceptance. It is observed that students want to show respect for diverse peoples and communities where they will work, but they are hampered by their inability to appreciate the viewpoints of people who do not share their values. They embrace benefit sharing and environmental protection as norms, but they mistakenly conclude that opposition to mining is rooted in a lack of education rather than in cultural values. Three, sequential, threshold concepts are identified as impeding development of intercultural competence: Awareness and Acknowledgement of Different Forms of Knowledge; Recognition that Value Systems are a Function of Culture; Respect for varied perceptions of Social Wellbeing and Quality of Life. Future curriculum development in the undergraduate mining engineering program, as well as in other educational programs relevant to the extractive sector, can be effectively targeted by focusing on these threshold concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of mathematics and science in secondary schools in the 21st century continues to be an important topic of practice and research. The purpose of my research study, which builds on studies by Frykholm and Glasson (2005) and Berlin and White (2010), is to explore the potential constraints and benefits of integrating mathematics and science in Ontario secondary schools based on the perspectives of in-service and pre-service teachers with various math and/or science backgrounds. A qualitative and quantitative research design with an exploratory approach was used. The qualitative data was collected from a sample of 12 in-service teachers with various math and/or science backgrounds recruited from two school boards in Eastern Ontario. The quantitative and some qualitative data was collected from a sample of 81 pre-service teachers from the Queen’s University Bachelor of Education (B.Ed) program. Semi-structured interviews were conducted with the in-service teachers while a survey and a focus group was conducted with the pre-service teachers. Once the data was collected, the qualitative data were abductively analyzed. For the quantitative data, descriptive and inferential statistics (one-way ANOVAs and Pearson Chi Square analyses) were calculated to examine perspectives of teachers regardless of teaching background and to compare groups of teachers based on teaching background. The findings of this study suggest that in-service and pre-service teachers have a positive attitude towards the integration of math and science and view it as valuable to student learning and success. The pre-service teachers viewed the integration as easy and did not express concerns to this integration. On the other hand, the in-service teachers highlighted concerns and challenges such as resources, scheduling, and time constraints. My results illustrate when teachers perceive it is valuable to integrate math and science and which aspects of the classroom benefit best from the integration. Furthermore, the results highlight barriers and possible solutions to better the integration of math and science. In addition to the benefits and constraints of integration, my results illustrate why some teachers may opt out of integrating math and science and the different strategies teachers have incorporated to integrate math and science in their classroom.