2 resultados para Scatter

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron beam lithography (EBL) and focused ion beam (FIB) methods were developed in house to fabricate nanocrystalline nickel micro/nanopillars so to compare the effect of fabrication on plastic yielding. EBL was used to fabricate 3 μm and 5 μm thick poly-methyl methacrylate patterned substrates in which nickel pillars were grown by electroplating with height to diameter aspect ratios from 2:1 to 5:1. FIB milling was used to reduce larger grown pillars to sizes similar to EBL grown pillars. X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and FIB imaging were used to characterize the nickel pillars. The measured grain size of the pillars was 91±23 nm, with strong <110> and weaker <111> and <110> crystallographic texture in the growth. Load-controlled compression tests were conducted using a MicroMaterials nano-indenter equipped with a 10 μm flat punch at constant rates from 0.0015 to 0.03 mN/s on EBL grown pillars, and 0.0015 and 0.015 mN/s on FIB-milled pillars. The measured Young’s modulus ranged from 55 to 350 GPa for all pillars, agreeing with values in the literature. EBL grown pillars exhibited stochastic strain-bursts at slow loading rates, attributed to local micro yield events, followed by work hardening. Sharp yield points were also observed and attributed to the gold seed layer de-bonding between the nickel pillar and substrate due to the shear stress associated with end effects that arise from the substrate constraint. The onset of yield ranged from 108 to 1800 MPa, which is greater than bulk nickel, but within values given in the literature. FIB-milled pillars demonstrated stochastic yield behaviour at all loading rates tested, yielding between 320 and 625 MPa. Deformation was apparent at FIB-milled pillar tops, where the smallest cross-sectional area was measured, but still exhibited superior yield strength to bulk nickel. The gallium damage at the outer surface of the pillars likely aids in dislocation nucleation and plasticity, leading to lower yield strengths than for the EBL pillars. Thermal drift, substrate effects, and noise due to vibrations within the indenter system contributed to variance and inconsistency in the data.