2 resultados para Scanning reference electrode technique

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative methods can help us understand how underlying attributes contribute to movement patterns. Applying principal components analysis (PCA) to whole-body motion data may provide an objective data-driven method to identify unique and statistically important movement patterns. Therefore, the primary purpose of this study was to determine if athletes’ movement patterns can be differentiated based on skill level or sport played using PCA. Motion capture data from 542 athletes performing three sport-screening movements (i.e. bird-dog, drop jump, T-balance) were analyzed. A PCA-based pattern recognition technique was used to analyze the data. Prior to analyzing the effects of skill level or sport on movement patterns, methodological considerations related to motion analysis reference coordinate system were assessed. All analyses were addressed as case-studies. For the first case study, referencing motion data to a global (lab-based) coordinate system compared to a local (segment-based) coordinate system affected the ability to interpret important movement features. Furthermore, for the second case study, where the interpretability of PCs was assessed when data were referenced to a stationary versus a moving segment-based coordinate system, PCs were more interpretable when data were referenced to a stationary coordinate system for both the bird-dog and T-balance task. As a result of the findings from case study 1 and 2, only stationary segment-based coordinate systems were used in cases 3 and 4. During the bird-dog task, elite athletes had significantly lower scores compared to recreational athletes for principal component (PC) 1. For the T-balance movement, elite athletes had significantly lower scores compared to recreational athletes for PC 2. In both analyses the lower scores in elite athletes represented a greater range of motion. Finally, case study 4 reported differences in athletes’ movement patterns who competed in different sports, and significant differences in technique were detected during the bird-dog task. Through these case studies, this thesis highlights the feasibility of applying PCA as a movement pattern recognition technique in athletes. Future research can build on this proof-of-principle work to develop robust quantitative methods to help us better understand how underlying attributes (e.g. height, sex, ability, injury history, training type) contribute to performance.