2 resultados para SONAR

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ocean is a hub of noise. Bioacoustic noise, noise from precipitation and wind, and noise from oceanic shelf slides and other geologic processes have occurred consistently as marine species have evolved over time. However, with the discovery of oceanic oil and gas reserves, submarine systems, ship propulsion and the emergence of global trade, anthropogenic sources of sound have added significant quantities of sound to the oceanic system. Shipping has been found to be the largest input of low-frequency anthropogenic noise and Humpback Whales (Megaptera novaengliae), known to be the most vocal marine species, have an auditory sensitivity that falls within the range of frequencies emitted by shipping vessels. As Humpback Whales are heavily dependent on vocalizations, for reasons relatively unconfirmed, a better understanding of why they sing and how their communication is being impacted by vessel noise is critical. Evaluating existing literature both on Humpback behavior and communication, the mechanics of their communication, sound emissions from modern ships, oceanic sound transmission, and studies regarding Humpback's exposure to other sources of low-frequency anthropogenic noise, it is clear that more research is needed to draw any causational conclusions between vessel noise and detrimental impacts on Humpback Whales. With a projected increase in global consumption and vessel traffic, there is an urgent need for further research exploring shipping noise impacts and behavioural alterations of Humpbacks. Existing research has shown changes in Humpback communication when exposed to low-frequency sonar noise, however few studies have been conducted on their communication when in close proximity to shipping vessels. In order for the impacts to be properly assessed, preliminary understanding of humpback communication, their auditory thresholds and more studies between vessel noise exposure and Humpback Whale behavior must be conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East Lake, located at Cape Bounty (Melville Island, Canadian High Arctic), was mapped using a high-resolution swath bathymetric sonar and a 12 kHz sub-bottom profiler, allowing for the first time the imaging of widespread occurrence of mass movement deposits (MMDs) in a Canadian High Arctic Lake. Mass movements occurred mostly on steep slopes located away from deltaic sedimentation. The marine to lacustrine transition in the sediment favours the generation of mass movements where the underlying massive mud appears to act as a gliding surface for the overlying varved deposits. Based on acoustic stratigraphy, we have identified at least two distinct events that triggered failures in the lake during the last 2000 years. The synchronicity of multiple failures and their widespread distribution suggest a seismic origin that could be related to the nearby Gustaf-Lougheed Arch seismic zone. Further sedimentological investigations on the MMDs are however required to confirm their age and origin.