1 resultado para Renormalization schemes
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (5)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (87)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (42)
- CentAUR: Central Archive University of Reading - UK (66)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (17)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Earth Simulator Research Results Repository (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (71)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (50)
- Queensland University of Technology - ePrints Archive (355)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (13)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Montréal, Canada (2)
- University of Michigan (18)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.