2 resultados para Regulated transcription
em QSpace: Queen's University - Canada
Resumo:
Disequilibrium between coagulation and fibrinolysis can lead to severe haemostatic disorders such as thrombosis and hemophilia. Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFI may also mediate connections between coagulation and inflammation. Studies have associated high plasma TAFI levels with risk for thrombotic diseases. Interestingly, steroid hormones, such as estrogen and progestogens used in hormone replacement therapy or oral contraceptive preparations, have been shown to affect plasma TAFI levels. Regulation of the expression of the gene encoding TAFI, CBP2, is likely an important determinant of the role of the TAFI pathway in vivo; this concept motivated the investigations described in this thesis. In Chapter 2, the results of my research lead to the identification of key transcription factors regulating CPB2. Specifically, we described the binding of NF-Y and HNF-1 to the CPB2 promoter. NF-Y was shown to be an important factor for the basal CPB2 promoter activity. Binding of HNF-1 is essential for the activity of the promoter and is potentially responsible for the liver specific expression of CPB2. In Chapter 3, we set to investigate the effect of female sex hormone on hepatic expression of CPB2. We demonstrated that the levels of TAFI protein secreted from cultured hepatoma cells (HepG2) are decreased by 17beta-estradiol and progesterone. The change in protein expression was paralleled by decreases in CPB2 mRNA abundance and promoter activity. Deletion analysis of the CPB2 promoter indicated that the genomic effects of estrogen and progesterone are likely mediated via a non-classical mechanism. In Chapter 4, we evaluated the effects of various inflammatory mediators on expression of the gene encoding mouse TAFI (Cpb2). Our results showed that Cpb2 mRNA abundance and promoter activity are up-regulated by inflammatory mediators IL-1beta, IL-6, and TNFalpha. We also showed that TNFalpha mediates its effect via the binding of NFkB. Additionally, our results suggest that TNFalpha promotes the binding of NFkB to the promoter by increasing its translocation to the nucleus. The NFkB site is not conserved between human and mouse and may explained the different responses to inflammation observed in vivo.
Resumo:
E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.