2 resultados para Radio-frequency power

em QSpace: Queen's University - Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Navigation devices used to be bulky and expensive and were not widely commercialized for personal use. Nowadays, all useful electronic devices are turning into being handheld so that they can be conveniently used anytime and anywhere. One can claim that almost any mobile phone, used today, has quite strong navigational capabilities that can efficiently work anywhere in the globe. No matter where you are, you can easily know your exact location and make your way smoothly to wherever you would like to go. This couldn’t have been made possible without the existence of efficient and small microwave circuits responsible for the transmission and reception of high quality navigation signals. This thesis is mainly concerned with the design of novel highly miniaturized and efficient filtering components working in the Global Navigational Satellite Systems (GNSS) frequency band to be integrated within an efficient Radio Frequency (RF) front-end module (FEM). A System-on-Package (SoP) integration technique is adopted for the design of all the components in this thesis. Two novel miniaturized filters are designed, where one of them is a wideband filter targeting the complete GNSS band with a fractional bandwidth of almost 50% at a center frequency of 1.385 GHz. This filter utilizes a direct inductive coupling topology to achieve the required wide band performance. It also has very good out-of-band rejection and low IL. Whereas the other dual band filter will only cover the lower and upper GNSS bands with a rejection notch in between the two bands. It has very good inter band rejection. The well-known “divide and conquer” design methodology was applied for the design of this filter to help save valuable design and optimization time. Moreover, the performance of two commercially available ultra-Low Noise Amplifiers (LNAs) is studied. The complete RF FEM showed promising preliminary performance in terms of noise figure, gain and bandwidth, where it out performed other commercial front-ends in these three aspects. All the designed circuits are fabricated and tested. The measured results are found to be in good agreements with the simulations.