2 resultados para RADIATION-THERAPY
em QSpace: Queen's University - Canada
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.