2 resultados para Protein Sequence
em QSpace: Queen's University - Canada
Resumo:
As the expression of the genetic blueprint, proteins are at the heart of all biological systems. The ever increasing set of available protein structures has taught us that diversity is the hallmark of their architecture, a fundamental characteristic that enables them to perform the vast array of functionality upon which all of life depends. This diversity, however, is central to one of the most challenging problems in molecular biology: how does a folding polypeptide chain navigate its way through all of the myriad of possible conformations to find its own particular biologically active form? With few overarching structural principles to draw upon that can be applied to all protein architecture, the search for a solution to the protein folding problem has yet to produce an algorithm that can explain and duplicate this fundamental biological process. In this thesis, we take a two-pronged approach for investigating the protein folding process. Our initial statistical studies of the distributions of hydrophobic and hydrophilic residues within α-helices and β-sheets suggest (i) that hydrophobicity plays a critical role in helix and sheet formation; and (ii) that the nucleation of these motifs may result in largely unidirectional growth. Most tellingly, from an examination of the amino acids found in the smallest β-sheets, we do not find any evidence of a β-nucleating code in the primary protein sequence. Complementing these statistical analyses, we have analyzed the structural environments of several ever-widening aspects of protein topology. Our examination of the gaps between strands in the smallest β-sheets reveals a common organizational principle underlying β-formation involving strands separated by large sequential gaps: with very few exceptions, these large gaps fold into single, compact structural modules, bringing the β-strands that are otherwise far apart in the sequence close together in space. We conclude, therefore, that β-nucleation in the smallest sheets results from the co-location of two strands that are either local in sequence, or local in space following prior folding events. A second study of larger β-sheets both corroborates and extends these findings: virtually all large sequential gaps between pairs of β-strands organize themselves into an hierarchical arrangement, creating a bread-crumb model of go-and-come-back structural organization that ultimately juxtaposes two strands of a parental β-structure that are far apart in the sequence in close spatial proximity. In a final study, we have formalized this go-and-come-back notion into the concept of anti-parallel double-strandedness (DS), and measure this property across protein architecture in general. With over 90% of all residues in a large, non-redundant set of protein structures classified as DS, we conclude that DS is a unifying structural principle that underpins all globular proteins. We postulate, moreover, that this one simple principle, anti-parallel double-strandedness, unites protein structure, protein folding and protein evolution.
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.