3 resultados para Problem-solving Support
em QSpace: Queen's University - Canada
Resumo:
The Interact System Model (ISM) developed by Fisher and Hawes (1971) for the analysis of face-to-face communication during small-group problem solving activities was used to study online communication. This tool proved to be of value in the analysis, but the conversation patterns reported by Fisher (1980) did not fully appear in the online environment. Participants displayed a habit of "being too polite" and not fully voicing their disagreements with ideas posed by others. Thus progress towards task completion was slow and incomplete.
Resumo:
Math-Towers (www.math-towers.ca) is an online resource for students in grades 6 to 10 that supports collaborative problem-solving and investigations. This paper presents the philosophical position motivating the development of Math-Towers and describes how the site presents and motivates the mathematical challenges and supports participants' exploration and collaboration.
Resumo:
This study examines how one secondary school teacher’s use of purposeful oral mathematics language impacted her students’ language use and overall communication in written solutions while working with word problems in a grade nine academic mathematics class. Mathematics is often described as a distinct language. As with all languages, students must develop a sense for oral language before developing social practices such as listening, respecting others ideas, and writing. Effective writing is often seen by students that have strong oral language skills. Classroom observations, teacher and student interviews, and collected student work served as evidence to demonstrate the nature of both the teacher’s and the students’ use of oral mathematical language in the classroom, as well as the effect the discourse and language use had on students’ individual written solutions while working on word problems. Inductive coding for themes revealed that the teacher’s purposeful use of oral mathematical language had a positive impact on students’ written solutions. The teacher’s development of a mathematical discourse community created a space for the students to explore mathematical language and concepts that facilitated a deeper level of conceptual understanding of the learned material. The teacher’s oral language appeared to transfer into students written work albeit not with the same complexity of use of the teacher’s oral expression of the mathematical register. Students that learn mathematical language and concepts better appear to have a growth mindset, feel they have ownership over their learning, use reorganizational strategies, and help develop a discourse community.