4 resultados para Private Collection

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to determine whether the establishment and operation of an archives services by the Hudson's Bay Company had an effect on the company's ability to carry out document repairs. Data collection methods included reviews of published material, archival records of the Hudson's Bay Company, and semi-structured interviews. The study found that the Hudson's Bay Company's commitment to operating a modern archives service in accordance with accepted archive administration practices had a substantial effect on its ability to carry out document repairs. The principled approach to repair, as practiced by the Public Record Office, was a major influence. A review of secondary sources placed this development squarely within the context of archival developments in 20th century England. Overall, the thesis findings add to the growing conversation about conservation history in England, in particular, archive conservation history as it occurred outside of the Public Record Office in the 20th century, by discussing how some methods of repair that were devised, adopted and extended by the Public Record Office in the 19th and 20th centuries were adopted and applied in the 20th century by a well-established business corporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The Allergic Rhinitis Clinical Investigator Collaborative (AR-CIC) uses a Nasal Allergen Challenge (NAC) model to study the pathophysiology of AR and provides proof of concept for novel therapeutics. The NAC model needs to ensure optimal participant qualification, allergen challenge, clinical symptoms capture and biological samples collection. Repeatability of the protocol is key to ensuring unbiased efficacy analysis of novel therapeutics. The effect of allergen challenge on IL-33 gene expression and its relation to IL1RL1 receptor and cytokine secretion was investigated. Methods Several iterations of the NAC protocol was tested, comparing variations of qualifying criteria based on the Total Nasal Symptom Score (TNSS) and Peak Nasal Inspiratory Flow (PNIF). The lowest allergen concentration was delivered and TNSS and PNIF recorded 15 minutes later. Participants qualified if the particular criteria for the protocol were met, otherwise the next higher allergen concentration (4-fold increase), was administered until the targets were reached. Participants returned for a NAC visit and received varying allergen challenge concentrations depending on the protocol, TNSS/PNIF were recorded at 15 minutes, 30 minutes, 1 hour, and hourly up to 12 hours, a 24 hour time point was added in later iterations. Repeatability was evaluated using a 3-4week interval between screening, NAC1, and NAC2 visits. Various biomarker samples were collected. Results A combined TNSS and PNIF criterion was more successful in qualifying participants. The cumulative allergen challenge (CAC) protocol proved more reliable in producing a robust clinical and biomarker response. Repeatability of the CAC protocol was achieved with a 3-week interval between visits, on a clinical and biological basis. IL-33 cytokine is an important biomarker in initiating the inflammatory response in AR in humans. IL-33 and IL1RL1 expression might employ a negative feedback mechanism in human nasal epithelial cells. Comparing the clinical and biological response to ragweed vs cat allergen challenge, proved the CAC protocol’s suitability for use employing different allergens. Conclusion The AR-CIC’s CAC protocol is an effective method of studying AR, capable of generating measurable and repeatable clinical and biomarker responses, enabling better understanding of AR pathophysiology and ensuring that any change would be purely due to medication under investigation in a clinical trial setting.