2 resultados para Polyharmonic function
em QSpace: Queen's University - Canada
Resumo:
In order for mammalian fertilization to transpire, spermatozoa must transit through the female reproductive tract and penetrate the outer investments of the oocyte: the cumulus oophorus and the zona pellucida. In order to penetrate the oocyte, spermatozoa must undergo the acrosome reaction. The acrosome reaction results in the exposure of the inner acrosomal membrane (IAM) and proteins that coat it to the extracellular environment. After the acrosome reaction, the IAM becomes the leading edge of spermatozoa undergoing progressive movement. Thus the enzymes which effect lysis of the oocyte investments ought to be located on the IAM. An objective of this study was to identify and characterize enzymatic activity detected on the IAM and provide evidence that they play a role in fertilization. This study also describes procedures for fractionating spermatozoa and isolating the IAM and proteins on its intra- and extra-vesicular surfaces, and describes their development during male gametogenesis. Since the IAM is exposed to the extracellular environment and oviductal milieu after the acrosome reaction, this study also sought to characterize interactions and relationships between factors in the oviductal environment and the enzymes identified on the IAM. The data presented provide evidence that MMP2 and acrosin are co-localized on the IAM, originate from the Golgi apparatus in gametogenesis, and suggest they cooperate in their function. Their localization and results of in vitro fertilization suggests they have a function in zona pellucida penetration. The data also provide evidence that plasminogen, originating from the oviductal epithelium and/or cumulus-oocyte complex, is present in the immediate environment of sperm-egg initial contact and penetration. Additionally, plasminogen interacts with MMP2 and enhances its enzymatic action on the IAM. The data also provide evidence that MMP2 has an important function in penetration of the cumulus oophorus. Holistically, this thesis provides evidence that enzymes on the IAM, originating from the Golgi apparatus in development, have an important function in penetration of the outer investments of the oocyte, and are aided in penetration by plasminogen in the female reproductive tract.
Resumo:
Background and aim: Within the gastrointestinal tract, vagal afferents regulate satiety and food intake via chemical and mechanical mechanisms. Cysteinyl Leukotrienes (CysLTs) are lipid mediators that are believed to regulate food intake and body weight. However, the involvement of vagal afferents in this effect remains to be established. Conversely, Glucagon like peptide-1 (GLP-1) is a satiety and incretin peptide hormone. The effect of obesity on GLP-1 mediated gut-brain signaling has yet to be investigated. Since intestinal vagal afferents’ activity is reduced during obesity, it is intriguing to investigate their responses to GLP-1 in such conditions. Methods: Extracellular recordings were performed on intestinal afferents from normal C57Bl6, low fat fed (LFF), and high fat fed (HFF) mice. To examine the effect on neuronal calcium signaling, calcium-imaging experiments were performed on isolated nodose ganglion neurons. Food intake experiments were conducted using LFF and HFF mice. Oral glucose tolerance tests (OGTT) were carried out. Whole cell patch clamp recordings were performed on nodose ganglion neurons from A) normal C57Bl mice to test the effect of CysLTs on membrane excitability, B) LFF and HFF mice to examine GLP-1 effect on membrane excitability during obesity. c-Fos immunohistochemical techniques were performed to measure the level of neuronal activation in the brainstem of both LFF and HFF mice in response to Ex-4. Results: CysLTs increased intestinal afferent firing rate and mechanosensitivity. In single nodose neuron experiments, CysLTs increased excitability. The GLP-1 agonist Ex-4 significantly decreased food intake in LFF but not HFF mice. However, Ex-4 markedly attenuated the rise in blood glucose in both LFF and HFF mice. The observed increase in nerve firing and mechanosensitivity following the application of GLP-1 and Ex-4 was abolished in HFF mice. Cell membrane excitability was significantly increased by Ex-4 in nodose from LFF but not HFF mice. Ex-4 significantly increased the number of activated neurons in the NTS area of LFF mice but not in their HFF counterparts. Conclusion: The previous observations indicate that the role CysLTs play in regulating satiety is likely to be vagally mediated. Also that satiety, but not incretin, effects of GLP-1 are impaired during obesity.