2 resultados para Platinum nanoparticle

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this thesis was to prepare medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) nanoparticle suspensions at high solids content (≥ 10 % w/v). A two-stage emulsification-solvent evaporation process was employed to produce poly-3-hydroxydecanoate (PHD) suspensions. The formulation and processing conditions including ultrasonication time and amplitude, selection of solvent, and selection of surfactants and their concentrations were investigated to make concentrated suspensions (10 and 30 % (w/v)) of PHD with particles less than 300 nm. Among the ionic surfactants tested to stabilize the suspension, the anionic, sodium dodecyl sulphate (SDS), and the cationic, dodecyltrimethylammonium bromide (DTAB) surfactants produced the smallest particle sizes (~100 nm). However, more stabilized nanoparticles were obtained when the ionic surfactant, SDS, was combined with any of the non-ionic surfactants tested, with polyoxyethylene octyl phenyl ether (Triton X-100) or polyoxyethylene (20) sorbitan monooleate (Tween 80) resulting in a slight increase in zeta potential over 30 days while the zeta potential with other non-ionic surfactants decreased. Mcl-PHA containing 11 and 18 % of carboxyl groups was synthesized via free radical addition reaction of 11-mercaptoundecanoic acid to the pendant double bonds of unsaturated poly-3-hydroxynonanoate (PHNU). Colloidal suspensions prepared by ultrasonication needed a surfactant to maintain stability, even at 0.4 % solids of mcl-PHA containing 11 % carboxylation (PHNC-1) unlike the stable suspensions prepared without surfactants by the titration method. Similar particle sizes (155.6 ± 8.4 to 163.4 ± 11.3 nm) and polydispersity indices (0.42 ± 0.03 to 0.49 ± 0.04) were obtained when several non-ionic surfactants were tested to minimize particle agglomeration, with the smallest particles obtained with Triton X-100. When Triton X-100 was combined with a variety of ionic surfactants, smaller nanoparticles (97.1 ± 1.1 to 121.7 ± 5.7 nm) with a narrower particle size distribution (0.21 ± 0.001 to 0.25 ± 0.003) were produced. The SDS and Triton X-100 combination was chosen to evaluate other mcl-PHAs at 10 % (w/v) solids content. Slightly smaller nanoparticles were formed with carboxylated mcl-PHAs compared to mcl-PHAs having aliphatic pendant side chains. Mcl-PHA consisting of 18 % carboxylation (PHNC-2) formed a much smaller nanoparticles and higher zeta potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South’s Africa’s position as global platinum supplier provides a unique opportunity for an emergent fuel cell industry. The innovative technology’s reliance on platinum has sparked interest in the mining sector, promoting the clean energy-producing devices in their own operations. This research focuses upon contemporary structures of racial oppression within the industry, to analyse how these dynamics influence the development and implementation of innovative technology. It also challenges the sustainability discourse associated with fuel cell technology in South Africa. The study follows a qualitative research approach, incorporating a political ecology focus to highlight the politicized nature of these interactions. The methodology incorporates a literature review, key informant interviews, fieldwork observations and document analysis. Findings indicate that the implementation of fuel cell technology in South Africa’s platinum mines will disproportionately burden historically disadvantaged South Africans, with the lack in technical knowledge-base considered a major challenge. Additionally, it was found that sustainability claims surrounding fuel cell technology are largely based on environmental characteristics. This has resulted in an oversimplification and a depoliticised account of the impacts of the technology. This study looked critically at the convergence of history and innovation, placing emphasis on context, power relations and knowledge to provide a more holistic account of the research problem. Opportunities exist for making a meaningful and viable contribution towards development and sustainability by means of investing in a South African fuel cell industry. The challenge will be in deliberately seeking pathways which address the more complex components of sustainability, benefitting all stakeholders and paying particular attention to the historical, political and social contexts from which the technology emerges. It is this particular context which allows for a questioning and perhaps even a re-evaluation of the sustainability narratives broadly applied to fuel cell technology.