2 resultados para Paint Lake Deformation Zone.

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

East Lake, located at Cape Bounty (Melville Island, Canadian High Arctic), was mapped using a high-resolution swath bathymetric sonar and a 12 kHz sub-bottom profiler, allowing for the first time the imaging of widespread occurrence of mass movement deposits (MMDs) in a Canadian High Arctic Lake. Mass movements occurred mostly on steep slopes located away from deltaic sedimentation. The marine to lacustrine transition in the sediment favours the generation of mass movements where the underlying massive mud appears to act as a gliding surface for the overlying varved deposits. Based on acoustic stratigraphy, we have identified at least two distinct events that triggered failures in the lake during the last 2000 years. The synchronicity of multiple failures and their widespread distribution suggest a seismic origin that could be related to the nearby Gustaf-Lougheed Arch seismic zone. Further sedimentological investigations on the MMDs are however required to confirm their age and origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was performed to characterize evidence of potential unconformity-type U mineralizing fluids in drill core fractures from the Stewardson Lake prospect, in the Athabasca Basin, located in Northern Saskatchewan and Alberta, Canada. Fractures were visually classified into eight varieties. This classification scheme was improved with the use of mineralogical characterization through SEM (Scanning Electron Microscope) and XRD analyses of the fracture fills and resulted in the identification of various oxides, hydroxides, sulfides, and clays or clay-sized minerals. Fractures were tallied to a total of ten categories with some commonalities in color. The oxidative, reductive or mixed nature of the fluids interacting with each fracture was determined based on its fill mineralogy. The measured Pb isotopic signature of samples was used to distinguish fractures affected solely by fluids emanating from a U mineralization source, from those affected by mixed fluids. Anomalies in U and U-pathfinder elements detected in fractures assisted with attributing them to the secondary dispersion halo of potential mineralization. Three types of fracture functions (chimney, composite and drain) were defined based on their interpreted flow vector and history. A secondary dispersion halo boundary with a zone of dominance of infiltrating fluids was suggested for two boreholes. The control of fill mineralogy on fracture color was investigated and the indicative and non-indicative colors and minerals, with respect to a secondary dispersion halo, were formally described. The fracture colors and fills indicative of proximity to the basement host of the potential mineralization were also identified. In addition, three zones of interest were delineated in the boreholes with respect to their geochemical dynamics and their relationship to the potential mineralization: a shallow barren overburden zone, a dispersion and alteration zone at intermediate depth, and a second deeper zone of dispersion and alteration.