2 resultados para P53 GENE DELETION
em QSpace: Queen's University - Canada
Resumo:
Disequilibrium between coagulation and fibrinolysis can lead to severe haemostatic disorders such as thrombosis and hemophilia. Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFI may also mediate connections between coagulation and inflammation. Studies have associated high plasma TAFI levels with risk for thrombotic diseases. Interestingly, steroid hormones, such as estrogen and progestogens used in hormone replacement therapy or oral contraceptive preparations, have been shown to affect plasma TAFI levels. Regulation of the expression of the gene encoding TAFI, CBP2, is likely an important determinant of the role of the TAFI pathway in vivo; this concept motivated the investigations described in this thesis. In Chapter 2, the results of my research lead to the identification of key transcription factors regulating CPB2. Specifically, we described the binding of NF-Y and HNF-1 to the CPB2 promoter. NF-Y was shown to be an important factor for the basal CPB2 promoter activity. Binding of HNF-1 is essential for the activity of the promoter and is potentially responsible for the liver specific expression of CPB2. In Chapter 3, we set to investigate the effect of female sex hormone on hepatic expression of CPB2. We demonstrated that the levels of TAFI protein secreted from cultured hepatoma cells (HepG2) are decreased by 17beta-estradiol and progesterone. The change in protein expression was paralleled by decreases in CPB2 mRNA abundance and promoter activity. Deletion analysis of the CPB2 promoter indicated that the genomic effects of estrogen and progesterone are likely mediated via a non-classical mechanism. In Chapter 4, we evaluated the effects of various inflammatory mediators on expression of the gene encoding mouse TAFI (Cpb2). Our results showed that Cpb2 mRNA abundance and promoter activity are up-regulated by inflammatory mediators IL-1beta, IL-6, and TNFalpha. We also showed that TNFalpha mediates its effect via the binding of NFkB. Additionally, our results suggest that TNFalpha promotes the binding of NFkB to the promoter by increasing its translocation to the nucleus. The NFkB site is not conserved between human and mouse and may explained the different responses to inflammation observed in vivo.
Resumo:
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFIa also possesses anti-inflammatory properties. Although liver is the main source of plasma TAFI, platelet-derived TAFI has also been reported. An alternatively spliced TAFI variant resulted from the skipping of exon 6 and a 52-base deletion in exon 10 of CPB2 mRNA (∆6+10) was described to be brain specific. This TAFI variant is reputed to possess a secretase-like activity that cleaves β-amyloid precursor protein to form β-amyloid, a process involved in the onset of Alzheimer's disease. In this thesis, we report the identification of CPB2 mRNA and TAFI protein in various vascular and inflammatory cells. Specifically, we describe the expression of CPB2 mRNA in the megakaryocytic cell lines MEG-01 and Dami, the monocytic cell line THP-1, and peripheral blood mononuclear cells. TAFI protein was detected in differentiated Dami and THP-1 cells. We next describe the effect of external stimuli such as phorbol myristate acetate (PMA) on CPB2 expression in Dami and THP-1 cells. We found that PMA treatment increases both CPB2 mRNA abundance and promoter activity in Dami cells, and decreases both CPB2 mRNA abundance and promoter activity in THP-1 cells. Deletion analysis of the CPB2 promoter indicated cell-type specific regulation of CPB2 gene expression. Finally, we evaluated the expression of alternatively spliced CPB2 mRNA variants in hepatic and non hepatic cells. We found that exon 6 skipping variants are expressed in all cell types of interest. The variant previously reported to be brain specific was also found to be expressed in platelets. We found that the alternatively spliced TAFI variants accumulated inside the cells in a non-secretable, hypoglycosylated form and showed no carboxypeptidase activity. Taken together, this thesis provides further evidence supporting the hypothesis that platelet-derived TAFI is originated from CPB2 gene expression in megakaryocytes. Moreover, our data imply a potential for site-specific anti-inflammatory control provided by macrophage-derived TAFI. Alternative splicing of the CPB2 mRNA may give rise to variants with an intracellular role, perhaps as a peptidase chaperone, and may modulate the synthesis of secretable TAFI.