4 resultados para P300 latency
em QSpace: Queen's University - Canada
Resumo:
E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.
Resumo:
Valproic acid (VPA), a commonly-used anticonvulsant drug, is associated with increased risk of fetal malformations, including neural tube defects (NTDs). Previous in vivo studies determined that VPA-exposed embryos with a NTD had altered expression of several proteins regulated by p300, a histone acetyltransferase (HAT) protein. p300 is capable of acetylating histones and non-histone proteins through its HAT activity, allowing it to transcriptionally regulate genes as well as modulate the stability and activity of specific proteins. NFκB, Stat3 and Egr1, all of which function as transcription factors, are regulated by p300 through its HAT activity. Together, these proteins all play an important role in maintaining the balance of apoptosis, proliferation and differentiation, the regulation of which is extremely important for proper embryonic development. The studies in this thesis utilized P19 embryonal carcinoma (EC) cells in order to determine the effects of VPA exposure on the expression of p300 and the aforementioned transcription factors, as well as apoptosis and proliferation, in vitro. P19 EC cells were exposed to C646, a selective p300 inhibitor, in order to assess whether the effects observed as a result of VPA exposure were due to p300 protein degradation. It was found that VPA exposure for 24 hours in P19 EC cells in vitro resulted in a significant decrease in p300 protein expression. VPA exposure also significantly decreased NFκB protein expression, while resulting in increased Stat3 protein expression. However, Stat3 acetylation and phosphorylation, which both contribute to Stat3 activation, were significantly decreased as a result of VPA exposure. p300 inhibition resulted in a significant decrease in NFκB, similar to what was observed as a result of VPA exposure, which suggests that VPA-mediated degradation of p300 may play a role in reduced NFκB protein expression following VPA exposure. Conversely, Stat3 protein expression, acetylation and phosphorylation were not significantly changed as a result of p300 inhibition, suggesting that p300 degradation does not play a role in VPA’s effects on Stat3 protein expression and activation. VPA exposure also resulted in a significant increase in apoptosis, while p300 inhibition did not significantly increase apoptosis. These data suggest that p300 degradation plays a role in VPA-mediated teratogenicity, and that VPA may target other cellular mechanisms in order to exert its teratogenic effects.
Resumo:
Exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of congenital malformations including heart, skeletal and most frequently neural tube defects. Although the mechanisms contributing to its teratogenesis are not well understood, VPA was previously shown to increase homologous recombination (HR)-mediated DNA repair and decrease protein expression of the transcription factor NF-κB/p65. The studies in this thesis utilized in vivo and in vitro models to evaluate the expression of HR mediators, investigate the implications of decreased p65 including DNA binding and transcriptional activation, and the expression and histone acetyltransferase activity of Cbp/p300 with an aim to provide mechanistic insight into VPA-mediated alterations. The first study demonstrated that following maternal administration of VPA, mouse embryonic mRNA expression of HR mediators Rad51, Brca1 and Brca2 exhibited temporal and tissue-specific alterations. Protein expression of Rad51 was similarly altered and preceded increased cleavage of caspase-3 and PARP; indicative of apoptosis. The second study confirms previous findings of decreased total cellular p65 protein using P19 cells, but is the first to demonstrate that nuclear p65 protein is unchanged. NF-κB DNA binding was decreased following VPA exposure and maybe mediated by decreased p50 protein, which dimerizes with p65 prior to DNA binding. Transcriptional activity of NF-κB was also increased with VPA exposure which was not due to increased p65 phosphorylation at Ser276. Furthermore, the transcriptional activation capacity was unaffected by VPA exposure as combined exposure to VPA and TNFα additively increased NF-κB activity. The third study demonstrated that VPA exposure in P19 cells decreased Cbp/p300 total cellular and nuclear protein attributed primarily to ubiquitin proteasome-mediated degradation. Histone acetyltransferase (HAT) activity of p300 was decreased proportionately to nuclear protein following VPA exposure. Inhibition of Cbp/p300 HAT activity decreased p65 total cellular protein, increased caspase-3 cleavage and ROS similar to VPA exposures. Furthermore, pre-treatment with the antioxidant enzyme catalase attenuated the increase in caspase-3 cleavage, but not p65 protein. Overall, this thesis demonstrates that VPA exposure impacts the expression and activity of the transcription factor NF-κB and transcriptional co-activators/HATs Cbp/p300, which has implications for downstream VPA targets including Rad51, Brca1 and Brca2.
Resumo:
Social context, such as mate availability and perceived competition, can influence a male’s mating tactics. In Drosophila melanogaster most research has investigated how physical interactions and the perceived levels of sperm competition alter mating behaviour. I wanted to know if males would respond to the perceived social environments without the presence of physical interaction. Using a unique apparatus, I altered focal males’ social context by separating them physically from a social environment using a screen. Focal males were either in: (i) the presence of rival males and mates, (ii) the presence of potential mates only, (iii) isolation, or (iv) the presence of rival males only. I also manipulated the period the focal male was conditioned to a social environment to assess if the timing of cues is important. My findings suggest that the duration of acclimation alters male mating tactics. Regardless of social environment, the duration a male was conditioned influenced copulation latency. Males that were conditioned to their social environment for the duration of the experiment had differing copulation latencies between environments. Males held in isolation took longer to successfully court females, and transferred less sperm during mating then experimental males in the presence of rival males. Additionally, copulation duration correlated with the number of sperm transferred. Overall, my results suggest that the social environment and the perceived competition level affect mating strategies even without physical interactions. Since this apparatus may trick flies into believing they are a part of a social group, while controlling the male mating status, future work could examine behavioural, genetic and physiological phenotype effects of the social environment for both sexes.