2 resultados para Outliers Resistant
em QSpace: Queen's University - Canada
Resumo:
Objective: The purpose of the study was to examine the relationship of surveillance and control activities in Canadian hospitals with rates of nosocomial methicillin-resistant S. aureus (MRSA), C. difficile associated diarrhea (CDAD), and vancomycin-resistant Enterococcus (VRE). Methods: Surveys were sent to Infection Control programs in hospitals that participated in an earlier survey of infection control practices in Canadian acute care hospitals. Results: One hundred and twenty of 145 (82.8%) hospitals responded to the survey. The mean MRSA rate was 2.0 (SD 2.9) per 1,000 admissions, the mean CDAD rate was 3.8 (SD 4.3), and the mean VRE rate was 0.4 (SD 1.5). Multiple stepwise regression analysis found hospitals that reported infection rates by specific risk groups (r = - 0.27, p < 0.01) and that kept attendance records of infection control teaching activities (r = - 0.23, p < 0.01) were associated with lower MRSA rates. Multiple stepwise regression analysis found larger hospitals (r = 0.25, p < 0.01) and hospitals where infection control committees or staff had the direct authority to close a ward or unit to further admissions due to outbreaks (r = 0.22, p < 0.05) were associated with higher CDAD rates. Multiple logistic regression analysis found larger hospitals (OR = 1.6, CI 1.2 - 2.0, p = 0.003) and teaching hospitals (OR = 3.7, CI 1.2 - 11.8, p = 0.02) were associated with the presence of VRE. Hospitals were less likely to have VRE when infection control staff frequently contacted physicians and nurses for reports of new infections (OR = 0.5, CI 0.3 - 0.7, p = 0.02) and there were in-service programs for updating nursing and ancillary staff on current infection control practices (OR = 0.2, CI 0.1 - 0.7, p = 0.01). Conclusions: Surveillance and control activities were associated with MRSA and CDAD rates and the presence of VRE. Surveillance and control activities might be especially beneficial in large and teaching hospitals.
Resumo:
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen that acts as a molecular link between the coagulation and fibrinolytic cascades. TAFI can be activated by thrombin and plasmin but the reaction is enhanced significantly when thrombin is in a complex with the endothelial cofactor thrombomodulin (TM). The in vitro properties of TAFI have been extensively characterized. Activated TAFI (TAFIa) is a thermally unstable enzyme that attenuates fibrinolysis by catalyzing the removal of basic residues from partially degraded fibrin. The in vivo role of the TAFI pathway, however, is poorly defined and very little is known about the role of different activators in regulating the TAFI pathway. In the present study, we have constructed and characterized various TAFI mutants that are resistant to activation by specific activators. Based on peptide sequence studies, these mutants were constructed by altering key amino acid residues surrounding the scissile R92-A93 bond. We measured the thermal stabilities of all our mutants and found them to be similar to wild type TAFI. We have identified that the TAFI mutants P91S, R92K, and S90P are impaired in activation by thrombin or thrombin-TM, thrombin alone, and thrombin alone or plasmin, respectively. The TAFI mutants A93V and S94V were predicted to be resistant to activation by plasmin but this was not observed. The triple mutant, DVV was not activated by any of the aforementioned activators. Finally, we have used in vitro fibrin clot lysis assays to evaluate the antifibrinolytic potential of our variants and were able to correlate their effectiveness with their respective activation kinetics. In summary, we have developed activation resistant TAFI variants that can potentially be used to explore the role of the TAFI pathway in vivo.