3 resultados para Optimal matching analysis.
em QSpace: Queen's University - Canada
Resumo:
We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.
Resumo:
The first objective of this research was to develop closed-form and numerical probabilistic methods of analysis that can be applied to otherwise conventional methods of unreinforced and geosynthetic reinforced slopes and walls. These probabilistic methods explicitly include random variability of soil and reinforcement, spatial variability of the soil, and cross-correlation between soil input parameters on probability of failure. The quantitative impact of simultaneously considering the influence of random and/or spatial variability in soil properties in combination with cross-correlation in soil properties is investigated for the first time in the research literature. Depending on the magnitude of these statistical descriptors, margins of safety based on conventional notions of safety may be very different from margins of safety expressed in terms of probability of failure (or reliability index). The thesis work also shows that intuitive notions of margin of safety using conventional factor of safety and probability of failure can be brought into alignment when cross-correlation between soil properties is considered in a rigorous manner. The second objective of this thesis work was to develop a general closed-form solution to compute the true probability of failure (or reliability index) of a simple linear limit state function with one load term and one resistance term expressed first in general probabilistic terms and then migrated to a LRFD format for the purpose of LRFD calibration. The formulation considers contributions to probability of failure due to model type, uncertainty in bias values, bias dependencies, uncertainty in estimates of nominal values for correlated and uncorrelated load and resistance terms, and average margin of safety expressed as the operational factor of safety (OFS). Bias is defined as the ratio of measured to predicted value. Parametric analyses were carried out to show that ignoring possible correlations between random variables can lead to conservative (safe) values of resistance factor in some cases and in other cases to non-conservative (unsafe) values. Example LRFD calibrations were carried out using different load and resistance models for the pullout internal stability limit state of steel strip and geosynthetic reinforced soil walls together with matching bias data reported in the literature.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration