5 resultados para On-site observations
em QSpace: Queen's University - Canada
Resumo:
As human populations and resource consumption increase, it is increasingly important to monitor the quality of our environment. While laboratory instruments offer useful information, portable, easy to use sensors would allow environmental analysis to occur on-site, at lower cost, and with minimal operator training. We explore the synthesis, modification, and applications of modified polysiloxane in environmental sensing. Multiple methods of producing modified siloxanes were investigated. Oligomers were formed by using functionalized monomers, producing siloxane materials containing silicon hydride, methyl, and phenyl side chains. Silicon hydride-functionalized oligomers were further modified by hydrosilylation to incorporate methyl ester and naphthyl side chains. Modifications to the siloxane materials were also carried out using post-curing treatments. Methyl ester-functionalized siloxane was incorporated into the surface of a cured poly(dimethylsiloxane) film by siloxane equilibration. The materials containing methyl esters were hydrolyzed to reveal carboxylic acids, which could later be used for covalent protein immobilization. Finally, the siloxane surfaces were modified to incorporate antibodies by covalent, affinity, and adsorption-based attachment. These modifications were characterized by a variety of methods, including contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, dye labels, and 1H nuclear magnetic resonance spectroscopy. The modified siloxane materials were employed in a variety of sensing schemes. Volatile organic compounds were detected using methyl, phenyl, and naphthyl-functionalized materials on a Fabry-Perot interferometer and a refractometer. The Fabry-Perot interferometer was found to detect the analytes upon siloxane extraction by deformation of the Bragg reflectors. The refractometer was used to determine that naphthyl-functionalized siloxanes had elevated refractive indices, rendering these materials more sensitive to some analytes. Antibody-modified siloxanes were used to detect biological analytes through a solid phase microextraction-mediated enzyme linked immunosorbent assay (SPME ELISA). The SPME ELISA was found to have higher analyte sensitivity compared to a conventional ELISA system. The detection scheme was used to detect Escherichia coli at 8500 CFU/mL. These results demonstrate the variety of methods that can be used to modify siloxanes and the wide range of applications of modified siloxanes has been demonstrated through chemical and biological sensing schemes.
Resumo:
At the Merrick Landfill, located outside of North Bay (Ontario, CA), an investigation into the potential for an environmental impact to the Little Sturgeon River as a result of landfill leachate discharge was undertaken using toxicity testing using 96 hour acute lethality on Oncorhynchus mykiss (Rainbow Trout). Landfill leachate may present a risk to receiving environments as it is comprised of an array of chemicals including organics, ammonia, and metals. Testing was conducted in three phases, firstly testing was completed on site throughout an existing natural attenuation zone where the presence of several groundwater seeps down gradient of the site had been identified to determine the effectiveness of the existing leachate control features at reducing the environmental risks. These tests indicated that the existing capture strategies were largely effective at reducing toxicity risks to the receiving environment. Testing was also completed on two pilot-scale hybrid-passive treatment systems to determine their effectiveness for leachate treatment. Summer performance of a constructed gravel wetland system was also shown to be effective at reducing the toxicity of the landfill leachate at the site. Lastly in order to support evaluation of leachate treatment requirements, a toxicity identification evaluation (TIE) was performed to determine the principle cause of toxicity within the leachate. Based on water chemistry analyses of samples collected at various locations at the site, the TIE identified ammonia toxicity as the primary source of toxicity in the leachate, with a secondary focus on metal toxicity.
Resumo:
This paper is concerned with strategic optimization of a typical industrial chemical supply chain, which involves a material purchase and transportation network, several manufacturing plants with on-site material and product inventories, a product transportation network and several regional markets. In order to address large uncertainties in customer demands at the different regional markets, a novel robust scenario formulation, which has been developed by the authors recently, is tailored and applied for the strategic optimization. Case study results show that the robust scenario formulation works well for this real industrial supply chain system, and it outperforms the deterministic formulation and the classical scenario-based stochastic programming formulation by generating better expected economic performance and solutions that are guaranteed to be feasible for all uncertainty realizations. The robust scenario problem exhibits a decomposable structure that can be taken advantage of by Benders decomposition for efficient solution, so the application of Benders decomposition to the solution of the strategic optimization is also discussed. The case study results show that Benders decomposition can reduce the solution time by almost an order of magnitude when the number of scenarios in the problem is large.
Resumo:
Cigar Lake is a high-grade uranium deposit, located in northern Saskatchewan, Canada. In order to extract the uranium ore remotely, thus ensuring minimal radiation dose to workers and also to access the ore from stable ground, the Jet Boring System (JBS) was developed by Cameco Corporation. This system uses a high-powered water jet to remotely excavate cavities. Survey data is required to determine the final shape, volume, and location of the cavity for mine planning purposes and construction. This paper provides an overview of the challenges involved in remotely surveying a JBS-mined cavity and studies the potential use of a time-of-flight (ToF) camera for remote cavity surveying. It reports on data collected and analyzed from inside an experimental environment as well as on real data acquired on site from the Cigar Lake and Rabbit Lake mines.
Resumo:
The problem of decentralized sequential detection is studied in this thesis, where local sensors are memoryless, receive independent observations, and no feedback from the fusion center. In addition to traditional criteria of detection delay and error probability, we introduce a new constraint: the number of communications between local sensors and the fusion center. This metric is able to reflect both the cost of establishing communication links as well as overall energy consumption over time. A new formulation for communication-efficient decentralized sequential detection is proposed where the overall detection delay is minimized with constraints on both error probabilities and the communication cost. Two types of problems are investigated based on the communication-efficient formulation: decentralized hypothesis testing and decentralized change detection. In the former case, an asymptotically person-by-person optimum detection framework is developed, where the fusion center performs a sequential probability ratio test based on dependent observations. The proposed algorithm utilizes not only reported statistics from local sensors, but also the reporting times. The asymptotically relative efficiency of proposed algorithm with respect to the centralized strategy is expressed in closed form. When the probabilities of false alarm and missed detection are close to one another, a reduced-complexity algorithm is proposed based on a Poisson arrival approximation. In addition, decentralized change detection with a communication cost constraint is also investigated. A person-by-person optimum change detection algorithm is proposed, where transmissions of sensing reports are modeled as a Poisson process. The optimum threshold value is obtained through dynamic programming. An alternative method with a simpler fusion rule is also proposed, where the threshold values in the algorithm are determined by a combination of sequential detection analysis and constrained optimization. In both decentralized hypothesis testing and change detection problems, tradeoffs in parameter choices are investigated through Monte Carlo simulations.