4 resultados para OPTICAL CHARACTERIZATION

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing appropriate treatments for easel paintings can be complex, as many works are composed of various materials that respond in different ways. When selecting a filling material for these artworks, several properties are investigated including: the need for the infill to react to environmental conditions in a similar manner as the original material; the need for the infill to have good handling properties, adhesion to the original support, and cohesion within the filling material; the ability for the infill to withstand the stress of the surrounding material and; be as flexible as the original material to not cause further damage. Also, changes in colour or mechanical properties should not occur as part of the ageing process. Studies are needed on acrylic-based materials used as infills in conservation treatments. This research examines some of the chemical, physical, and optical changes of eleven filling materials before and after ageing, with the aim to evaluate the overall appropriateness of these materials as infills for easel paintings. The materials examined were three rabbit skin glue (RSG) gessoes, and seven commercially prepared acrylic materials, all easily acquired in North America. Chemical analysis was carried out with Fourier transform infrared (FTIR) spectroscopy and X-ray fluorescence (XRF), pyrolysis gas chromatography-mass spectroscopy (Py-GC/MS), and differential scanning calorimetry (DSC). Overall the compositions of the various materials examined were found to be in agreement with the available literature and previous research. This study also examined characteristics of these materials not described in previous works and, additionally, presented the compositions and behaviour of several commonly used materials with little literature description. After application of an ageing regimen, most naturally aged and artificially aged samples displayed small changes in gloss, colour, thickness, and diffusive behaviour; however, to evaluate these materials fully mechanical testing and environmental studies should be carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘De Vries-like’ smectic liquid crystals exhibit low layer contraction of approximately 1% on transitions from the SmA to the SmC phase. These materials have received considerable attention as potential solutions for problems affecting liquid crystal displays using surface-stabilized ferroelectric liquid crystals (SSFLC). In SSFLCs, layer contraction of 710% is normally observed during the SmA to SmC phase transition. A study by the Lemieux group has shown that liquid crystals with nanosegregating carbosilane segments exhibit enhanced ‘de Vries-like’ properties through the formation of smectic layers and by lengthening the nanosegregating carbosilane end-groups from monocarbosilane to tricarbosilane. This observed enhancement is assumed to be due to an increase in the cross-section of the free volume in the hydrocarbon sub-layer. To test this hypothesis, it is assumed that dimers with a tricarbosilane linking group have smaller cross-sections on time average. In his thesis, this hypothesis is tested through the characterization of new liquid crystalline monomers (QL39-n) and dimers (QL40-n) with 2-phenylpyrimidine cores and tricarbosilane end-groups and spacers, respectively. The thesis describes the synthesis of two homologous series of liquid crystals and their characterization using a variety of techniques, including polarized optical microscopy, differential scanning calorimetry and X-ray diffraction. The results show that the monomers QL39-n form a tilted SmC phase only, whereas the dimers QL40-n form an orthogonal SmA phase. These results are discussed in the context of our hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.