4 resultados para Numerical surface modeling

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this thesis is to explore and quantify the response of large-scale solid mass transfer events on satellite-based gravity observations. The gravity signature of large-scale solid mass transfers has not been deeply explored yet; mainly due to the lack of significant events during dedicated satellite gravity missions‘ lifespans. In light of the next generation of gravity missions, the feasibility of employing satellite gravity observations to detect submarine and surface mass transfers is of importance for geoscience (improves the understanding of geodynamic processes) and for geodesy (improves the understanding of the dynamic gravity field). The aim of this thesis is twofold and focuses on assessing the feasibility of using satellite gravity observations for detecting large-scale solid mass transfers and on modeling the impact on the gravity field caused by these events. A methodology that employs 3D forward modeling simulations and 2D wavelet multiresolution analysis is suggested to estimate the impact of solid mass transfers on satellite gravity observations. The gravity signature of various submarine and subaerial events that occurred in the past was estimated. Case studies were conducted to assess the sensitivity and resolvability required in order to observe gravity differences caused by solid mass transfers. Simulation studies were also employed in order to assess the expected contribution of the Next Generation of Gravity Missions for this application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hurricane Sandy was the largest storm on historical record in the Atlantic Ocean basin with extensive coastal damage caused by large waves and high storm surge. The primary objectives of this thesis are to compare and evaluate three different spatially-varying surface wind fields of Hurricane Sandy to investigate the impact of the differences between the complex wind fields on predictions of the sea surface evolution, and to evaluate the impact of the storm on the hydrodynamics in Great South Bay (GSB) and the discharge of ocean water into the back-barrier bay from overwash over Fire Island. Three different spatially-varying surface wind fields were evaluated and compared to wind observations, including the parametric Holland (1980) model (H80), the parametric Generalized Asymmetric Holland Model (GAHM), and results from the WeatherFlow Regional Atmospheric Modelling System (WRAMS). The winds were used to drive the coupled Delft3D-SWAN hydrodynamic and ocean wave models on a regional grid. The results indicate that the WRAMS wind field produces wave model predictions in the best agreement with significant wave height observations, followed by the GAHM and H80 wind fields and that a regional atmospheric wind model is best for hindcasting hurricane waves and water levels when detailed observations are available, while a parametric vortex model is best for forecasting hurricane sea surface conditions. Using a series of four connected Delft3D-SWAN grids to achieve finer resolution over Fire Island and GSB, a higher resolution WRAMS was used to predict waves and storm surge. The results indicate that strong local winds have the largest influence on water level fluctuations in GSB. Three numerical solutions were conducted with varying extents of barrier island overwash. The simulations allowing for minor and major overwash indicated good agreement with observations in the east end of GSB and suggest that island overwash provided a significant contribution of ocean water to GSB during the storm. Limiting the overwash in the numerical model directly impacts the total discharge into GSB from the ocean through existing inlets. The results of this study indicate that barrier island overwash had a significant impact on the water levels in eastern GSB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.