4 resultados para Non-smooth ordinary differential equations
em QSpace: Queen's University - Canada
Resumo:
Aberrant behavior of biological signaling pathways has been implicated in diseases such as cancers. Therapies have been developed to target proteins in these networks in the hope of curing the illness or bringing about remission. However, identifying targets for drug inhibition that exhibit good therapeutic index has proven to be challenging since signaling pathways have a large number of components and many interconnections such as feedback, crosstalk, and divergence. Unfortunately, some characteristics of these pathways such as redundancy, feedback, and drug resistance reduce the efficacy of single drug target therapy and necessitate the employment of more than one drug to target multiple nodes in the system. However, choosing multiple targets with high therapeutic index poses more challenges since the combinatorial search space could be huge. To cope with the complexity of these systems, computational tools such as ordinary differential equations have been used to successfully model some of these pathways. Regrettably, for building these models, experimentally-measured initial concentrations of the components and rates of reactions are needed which are difficult to obtain, and in very large networks, they may not be available at the moment. Fortunately, there exist other modeling tools, though not as powerful as ordinary differential equations, which do not need the rates and initial conditions to model signaling pathways. Petri net and graph theory are among these tools. In this thesis, we introduce a methodology based on Petri net siphon analysis and graph network centrality measures for identifying prospective targets for single and multiple drug therapies. In this methodology, first, potential targets are identified in the Petri net model of a signaling pathway using siphon analysis. Then, the graph-theoretic centrality measures are employed to prioritize the candidate targets. Also, an algorithm is developed to check whether the candidate targets are able to disable the intended outputs in the graph model of the system or not. We implement structural and dynamical models of ErbB1-Ras-MAPK pathways and use them to assess and evaluate this methodology. The identified drug-targets, single and multiple, correspond to clinically relevant drugs. Overall, the results suggest that this methodology, using siphons and centrality measures, shows promise in identifying and ranking drugs. Since this methodology only uses the structural information of the signaling pathways and does not need initial conditions and dynamical rates, it can be utilized in larger networks.
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.
Resumo:
We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.