1 resultado para Non-pharmacological therapy

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

GM2 gangliosidoses is a family of severe, neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A (Hex A) enzyme. This disorder is typically caused by a mutation to either the HEXA gene, causing Tay Sachs disease, or a mutation to the HEXB gene, causing Sandhoff disease. The HEXA and HEXB genes are required to produce the α and β subunits of the Hex A enzyme respectively. Using a Sandhoff disease (SD) mouse model (Hexb-/-) we tested the potential of a low dose of systemically delivered single stranded adeno-associated virus 9 (ssAAV9) expressing human HEXB and human HEXA cDNA under the control of a single promoter through the use of a bicistronic vector design with a P2A linker to correct the neurological phenotype. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector (HexB-HexA) or a vehicle solution via the superficial temporal vein. HexB-HexA treatment alone conferred an increase in survival of 56% compared to vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in HexA activity and a decrease in brain GM2 ganglioside buildup. Additionally, treatments with the non-steroidal anti-inflammatory drug indomethacin (Indo), the histone deactylase inhibitor ITF2357 (ITF) and the pharmacological chaperone pyrimethamine (Pyr) were tested. The anti-inflammatory treatments of Indo and ITF conferred an increase in survival of 12% and 8% respectively while causing no alteration in the HexA activity or GM2 ganglioside buildup. Pyr had no observable effect on disease progression. Lastly HexB-HexA treatment was tested in conjunction with Indo, ITF and Pyr individually. Additive increases in survival and behavioural testing results were observed with Indo and ITF treatments while no additional benefit to HexA activity or GM2 ganglioside levels in the brain tissue was observed. This indicates the two treatments slowed the progression of the disease through a different mechanism than the reduction of the GM2 ganglioside substrate. Pyr treatment was shown to have no effect when combined with HexB-HexA treatment. This study demonstrates the potential amelioration of SD with a novel AAV9 gene therapy approach as well as helped to identify the additive potential of anti-inflammatory treatments in gene therapy of GM2 gangliosidoses.