2 resultados para Non-Rigid Structure from Motion

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Moderate-to-vigorous physical activity (MVPA) is an important determinant of children’s physical health, and is commonly measured using accelerometers. A major limitation of accelerometers is non-wear time, which is the time the participant did not wear their device. Given that non-wear time is traditionally discarded from the dataset prior to estimating MVPA, final estimates of MVPA may be biased. Therefore, alternate approaches should be explored. OBJECTIVES: The objectives of this thesis were to 1) develop and describe an imputation approach that uses the socio-demographic, time, health, and behavioural data from participants to replace non-wear time accelerometer data, 2) determine the extent to which imputation of non-wear time data influences estimates of MVPA, and 3) determine if imputation of non-wear time data influences the associations between MVPA, body mass index (BMI), and systolic blood pressure (SBP). METHODS: Seven days of accelerometer data were collected using Actical accelerometers from 332 children aged 10-13. Three methods for handling missing accelerometer data were compared: 1) the “non-imputed” method wherein non-wear time was deleted from the dataset, 2) imputation dataset I, wherein the imputation of MVPA during non-wear time was based upon socio-demographic factors of the participant (e.g., age), health information (e.g., BMI), and time characteristics of the non-wear period (e.g., season), and 3) imputation dataset II wherein the imputation of MVPA was based upon the same variables as imputation dataset I, plus organized sport information. Associations between MVPA and health outcomes in each method were assessed using linear regression. RESULTS: Non-wear time accounted for 7.5% of epochs during waking hours. The average minutes/day of MVPA was 56.8 (95% CI: 54.2, 59.5) in the non-imputed dataset, 58.4 (95% CI: 55.8, 61.0) in imputed dataset I, and 59.0 (95% CI: 56.3, 61.5) in imputed dataset II. Estimates between datasets were not significantly different. The strength of the relationship between MVPA with BMI and SBP were comparable between all three datasets. CONCLUSION: These findings suggest that studies that achieve high accelerometer compliance with unsystematic patterns of missing data can use the traditional approach of deleting non-wear time from the dataset to obtain MVPA measures without substantial bias.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.