1 resultado para Neumann boundary conditions
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (8)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (16)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (21)
- Cambridge University Engineering Department Publications Database (57)
- CentAUR: Central Archive University of Reading - UK (88)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (95)
- Cochin University of Science & Technology (CUSAT), India (6)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (4)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (182)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (60)
- Queensland University of Technology - ePrints Archive (74)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (136)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (13)
- Université de Montréal, Canada (9)
- University of Michigan (1)
- University of Queensland eSpace - Australia (8)
- University of Washington (1)
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.