2 resultados para NPEMFE-Method, Cereskop, electromagnetic emission, redistribution of stress, landslide

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increased warming in the Arctic, permafrost thaw may induce localized physical disturbance of slopes. These disturbances, referred to as active layer detachments (ALDs), redistribute soil across the landscape, potentially releasing previously unavailable carbon (C). In 2007–2008, widespread ALD activity was reported at the Cape Bounty Arctic Watershed Observatory in Nunavut, Canada. Our study investigated organic matter (OM) composition in soil profiles from ALD-impacted and undisturbed areas. Solid-state 13C nuclear magnetic resonance (NMR) and solvent-extractable biomarkers were used to characterize soil OM. Throughout the disturbed upslope profile, where surface soils and vegetation had been removed, NMR revealed low O-alkyl C content and biomarker analysis revealed low concentrations of solvent-extractable compounds suggesting enhanced erosion of labile-rich OM by the ALD. In the disturbed downslope region, vegetation remained intact but displaced material from upslope produced lateral compression ridges at the surface. High O-alkyl content in the surface horizon was consistent with enrichment of carbohydrates and peptides, but low concentrations of labile biomarkers (i.e., sugars) suggested the presence of relatively unaltered labile-rich OM. Decreased O-alkyl content and biomarker concentrations below the surface contrasted with the undisturbed profile and may indicate the loss of well-established pre-ALD surface drainage with compression ridge formation. However, pre-ALD profile composition remains unknown and the observed decreases may result from nominal pre-ALD OM inputs. These results are the first to establish OM composition in ALD-impacted soil profiles, suggesting reallocation of permafrost-derived soil C to areas where degradation or erosion may contribute to increased C losses from disturbed Arctic soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A double balanced (DBM) CMOS mixer providing high linearity is presented in this paper. A cross-coupled pair used in the IF stage of the mixer to dynamically inject current into the to mixer provide a high linearity. The proposed DBM was fabricated using a standard 130-nm CMOS process and was tested on-wafer. The double balanced mixer delivers 10 dB conversion gain, 9.5 dBm IIP3, and input P1dB of -2.4 dBm. RF bandwidth of the proposed mixer is 6 GHz, covering 0.5 GHz to 6.5 GHz with IF bandwidth of 300 MHz. RF to IF and LO to IF isolation are also better than 59 dB in the whole frequency band. The circuit uses an area of 0.015 mm2 excluding bonding pads and draw 4.5mW from a 1.2V supply.