3 resultados para Multiple-scale processing

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although persuasion often occurs via oral communication, it remains a comparatively understudied area. This research tested the hypothesis that changes in three properties of voice influence perceptions of speaker confidence, which in turn differentially affects attitudes according to different underlying psychological processes that the Elaboration Likelihood Model (ELM, Petty & Cacioppo, 1984), suggests should emerge under different levels of thought. Experiment 1 was a 2 (Elaboration: high vs. low) x 2 (Vocal speed: increased speed vs. decreased speed) x 2 (Vocal intonation: falling intonation vs. rising intonation) between participants factorial design. Vocal speed and vocal intonation influenced perceptions of speaker confidence as predicted. In line with the ELM, under high elaboration, confidence biased thought favorability, which in turn influenced attitudes. Under low elaboration, confidence did not bias thoughts but rather directly influenced attitudes as a peripheral cue. Experiment 2 used a similar design as Experiment 1 but focused on vocal pitch. Results confirmed pitch influenced perceptions of confidence as predicted. Importantly, we also replicated the bias and cue processes found in Experiment 1. Experiment 3 investigated the process by which a broader spectrum of speech rate influenced persuasion under moderate elaboration. In a 2 (Argument quality: strong vs. weak) x 4 (Vocal speed: extremely slow vs. moderately slow vs. moderately fast vs. extremely fast) between participants factorial design, results confirmed the hypothesized non-linear relationship between speech rate and perceptions of confidence. In line with the ELM, speech rate influenced persuasion based on the amount of processing. Experiment 4 investigated the effects of a broader spectrum of vocal intonation on persuasion under moderate elaboration and used a similar design as Experiment 3. Results indicated a partial success of our vocal intonation manipulation. No evidence was found to support the hypothesized mechanism. These studies show that changes in several different properties of voice can influence the extent to which others perceive them as confident. Importantly, evidence suggests different vocal properties influence persuasion by the same bias and cue processes under high and low thought. Evidence also suggests that under moderate thought, speech rate influences persuasion based on the amount of processing.