2 resultados para Morphology Control Synthesis

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether children’s inhibitory control is associated with their ability to produce irregular verb forms as well as learn from corrective feedback following their use of an over-regularized form. Forty-eight 3.5 to 4.5 year old children were tested on the irregular past tense and provided with adult corrective input via models of correct use or recasts of errors following ungrammatical responses. Inhibitory control was assessed with a three-item battery of tasks that required suppressing a prepotent response in favor of a non-canonical one. Results showed that inhibitory control was predictive of children’s initial production of irregular forms and not associated with their post-feedback production of irregulars. These findings show that children’s executive functioning skills may be a rate-limiting factor on their ability to produce correct forms, but might not interact with their ability to learn from input in this domain. Findings are discussed in terms of current theories of past-tense acquisition and learning from input more broadly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA sequences that are rich in the guanine nucleic base possess the ability to fold into higher order structures called G-quadruplexes. These higher level structures are formed as a result of two sets of four guanine bases hydrogen-bonding together in a planar arrangement called a guanine quartet. Guanine quartets subsequently stack upon each other to form quadruplexes. G-quadruplexes are mainly localized in telomeres as well as in oncogene promoters. One unique and promising therapeutic approach against cancer involves targeting and stabilizing G-quadruplexes with small molecules, generally in order to suppress oncogene expression and telomerase enzyme activity; the latter has been found to contribute to “out-of control” cell growth in ca. 80-85% of all cancer cells and primary tumours while being absent in normal somatic cells. In this work, we present efforts towards designing and synthesizing acridine-based macrocycles (Mh) and (Mb) with the purpose of providing potential G4 ligands that are suited for selective binding to G4 vs. duplex DNA, and stabilize G-quadruplex structures. Two ligands described in this study include an acridine core which provides an aromatic surface capable of π-π interactions with the surface of G-quadruplexes. The successful synthesis of 4,5-diaminoacridine is described in chapter 2, as an essential fragment of the macrocycles (Mh) and (Mb). In order to investigate the synthetic method for macrocyclization, model compounds composing almost half of the designed macrocycles were explored. As discussed in chapter 3, the synthesis of the model compound for (Mb) turned out to be challenging. However, as a step towards the synthesis of (Mh), the synthesis of the hydrogen-containing model compound, which is almost half of the desired macrocycle (Mh) was achieved in our group and proved to be promising.