3 resultados para Mine ventilation.

em QSpace: Queen's University - Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate a technique to utilize underground mine drift profile data for estimating absolute roughness of an underground mine drift in order to implement the Darcy-Weisbach equation for mine ventilation calculations. This technique could provide mine ventilation engineers with more accurate information upon which they might base their ventilation systems designs. This paper presents preliminary work suggesting that it is possible to estimate the absolute roughness of drift-like tunnels by analyzing profile data (e.g., collected using a scanning laser rangefinder). The absolute roughness is then used to estimate the friction factor employed in the Darcy-Weisbach equation. The presented technique is based on an analysis of the spectral characteristics of profile ranges. Simulations based on real mine data are provided to illustrate the potential viability of this method. It is shown that mining drift roughness profiles appear similar to Gaussian profiles

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.