2 resultados para Mine and body
em QSpace: Queen's University - Canada
Resumo:
Background: Adolescence is a period of life associated with self-perceptions of negative body image. Physical activity levels are low and screen time levels are also high during this stage. These perceptions and behaviours are associated with poor health outcomes, making research on their determinants important. With adolescent populations, certain groups may be at higher risk of body dissatisfaction than others, and body dissatisfaction may influence individual physical activity and screen time levels. Objectives: The objectives of this thesis were to: 1) describe body image among young Canadians, examining possible health inequalities 2) estimate the strength and significance of associations between body satisfaction, physical activity and screen time, and 3) examine the potential etiological role of biological sex. Methods: Objective 1: The 2013/2014 Health Behaviour in School-aged Children study was employed. Sex-stratified Rao-Scott chi-square analyses were conducted to examine associations between socio-demographic factors and body satisfaction. Objective 2: The 2005/2006 and 2013/2014 cross-sectional and 2006 longitudinal HBSC data sets were used. Sex-stratified modified Poisson regressions were conducted and risk estimates and associated confidence intervals obtained. Results: Objective 1: Among males, being older, of East and Southeast Asian ethnicity, and reporting low SES all were associated with body dissatisfaction. Among females, being older, of Arab and West Asian or African ethnicity, being born in Canada, and reporting low SES were all associated with being body dissatisfied. Objective 2: Cross-sectionally, males who reported ‘too fat’ body dissatisfaction were more likely to be physically inactive. Adolescents of both sexes who reported ‘too fat’ body dissatisfaction were more likely to engage in high levels of screen time. Data from the longitudinal component supported the idea that male ‘too fat’ body dissatisfaction temporally leads to physical inactivity, but showed an inverse relationship between body dissatisfaction and screen time. Conclusions: Objective 1: Future prevention efforts in Canada should target subgroups to effectively help those at greatest risk of body dissatisfaction, and ameliorate potential inequalities at the population level. Objective 2: The presence of these relationships may inform future interventions as part of a multi-factorial etiology, in order to increase physical activity and decrease screen time among youth.
Resumo:
Background and aim: Within the gastrointestinal tract, vagal afferents regulate satiety and food intake via chemical and mechanical mechanisms. Cysteinyl Leukotrienes (CysLTs) are lipid mediators that are believed to regulate food intake and body weight. However, the involvement of vagal afferents in this effect remains to be established. Conversely, Glucagon like peptide-1 (GLP-1) is a satiety and incretin peptide hormone. The effect of obesity on GLP-1 mediated gut-brain signaling has yet to be investigated. Since intestinal vagal afferents’ activity is reduced during obesity, it is intriguing to investigate their responses to GLP-1 in such conditions. Methods: Extracellular recordings were performed on intestinal afferents from normal C57Bl6, low fat fed (LFF), and high fat fed (HFF) mice. To examine the effect on neuronal calcium signaling, calcium-imaging experiments were performed on isolated nodose ganglion neurons. Food intake experiments were conducted using LFF and HFF mice. Oral glucose tolerance tests (OGTT) were carried out. Whole cell patch clamp recordings were performed on nodose ganglion neurons from A) normal C57Bl mice to test the effect of CysLTs on membrane excitability, B) LFF and HFF mice to examine GLP-1 effect on membrane excitability during obesity. c-Fos immunohistochemical techniques were performed to measure the level of neuronal activation in the brainstem of both LFF and HFF mice in response to Ex-4. Results: CysLTs increased intestinal afferent firing rate and mechanosensitivity. In single nodose neuron experiments, CysLTs increased excitability. The GLP-1 agonist Ex-4 significantly decreased food intake in LFF but not HFF mice. However, Ex-4 markedly attenuated the rise in blood glucose in both LFF and HFF mice. The observed increase in nerve firing and mechanosensitivity following the application of GLP-1 and Ex-4 was abolished in HFF mice. Cell membrane excitability was significantly increased by Ex-4 in nodose from LFF but not HFF mice. Ex-4 significantly increased the number of activated neurons in the NTS area of LFF mice but not in their HFF counterparts. Conclusion: The previous observations indicate that the role CysLTs play in regulating satiety is likely to be vagally mediated. Also that satiety, but not incretin, effects of GLP-1 are impaired during obesity.