2 resultados para Microanalysis

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Olivia framework is a set of concepts and measures that, when mature, will allow users to describe, in a consistent and integrated manner, everything about individuals and institutions that is of potential interest to social policy. The present paper summarizes the current stage of development in achieving this highly ambitious goal. The current version of the framework supports analysis of social trends and policy responses from many perspectives: • The point-in-time, resource-flow perspectives that underlie most traditional, economics-based policy analysis. • Life-course perspectives, including both transitions/trajectories analysis and asset-based analysis. • Spatial perspectives that anchor people in space and history and that provide a link to macro-analysis. • The perspective of the purposes/goals of individuals and institutions, including the objectives of different types of government programming. The concepts of the framework, which are all potentially measurable, provide a language that can support integrated analysis in all these areas at a much finer level of description than is customary. It provides a language that is especially well suited for analysis of the incremental policy changes that are typical of a mature welfare state. It supports both qualitative and quantitative analysis, enabling some integration between the two. It supports citizen-centric as well as a government-centric view of social policy. In its current version, the concepts are most highly developed as they related to social policies as they related to labour markets, equality and social integration, care-giving, immigration, income security, sustainability, and social and economic well-being more generally. However the paper points to likely extensions in the areas of health, justice and safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical compositions, modal mineralogy, and textural variability of interstitial minerals in sandstones of the Athabasca Group strata in the vicinity of the McArthur River unconformity-related uranium deposit were characterized using a combination of short wave infrared spectroscopy (SWIR), lithogeochemistry, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and laser ablation mass spectrometry (LA-ICP-MS) to determine the residence sites of pathfinder trace elements. The importance of integrating in-situ mineral chemistry with whole-rock analyses resides in the possibility to establish the mineralogical and paragenetic context of geochemical signatures in defining the footprint of the deposit. Located in the Athabasca Basin, Saskatchewan, Canada, the deposit is situated below ~550 m of quartz arenitic sandstones that are strongly silicified between depths of approximately 200-400 m. The silicified layer exhibits significant control on the distribution of alteration minerals, and appears to have restricted both the primary and secondary dispersion of pathfinder trace elements, which include U, radiogenic Pb isotopes, V, Ni, Co, Cu, Mo, As, Zn, and REEs. Diagenetic background sandstones contain assemblages of illite, dickite, aluminum-phosphate-sulfate (APS) minerals, apatite, and Fe-Ti oxide minerals. Altered sandstones contain assemblages of Al-Mg chlorite (sudoite), alkali-deficient dravite, APS minerals, kaolinite, illite, and oxide minerals. Throughout the sandstones, APS minerals account for the majority of the Sr and LREE concentrations, whereas late pre-ore chlorite, containing up to 0.1 wt.% Ni, accounts for the majority of Ni concentrations. Cobalt, Cu, Mo, and Zn occur predominantly in cryptic sub-micron sulfide and sulfarsenide inclusions in clay mineral aggregates and in association with paragenetically-late Fe-Ti oxides. Uranium occurs predominantly in cryptic micro-inclusions associated with pyrite in late-stage quartz overgrowths, and with paragenetically late Fe-Ti oxide micro-inclusions in kaolinite. Additionally, up to 0.2 wt.% U is cryptically distributed in post-ore Fe-oxide veins. Early diagenetic apatite, monazite and apatite inclusions in detrital quartz, and detrital zircon also contribute significant U and HREE to samples analyzed with an aggressive leach such as Aqua Regia. Detailed LA-ICP-MS chemical mapping of interstitial assemblages, detrital grains, and cements provides new insights into the distribution and inventory of pathfinder elements in the footprint of the McArthur River uranium deposit.