2 resultados para Mg2
em QSpace: Queen's University - Canada
Resumo:
Tourmaline from a gem-quality deposit in the Grenville province has been studied with X-ray diffraction, visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, electron microprobe and optical measurements. The tourmaline is found within tremolite-rich calc-silicate pods hosted in marble of the Central Metasedimentary Belt. The crystals are greenish-greyish-brown and have yielded facetable material up to 2.09 carats in size. Using the classification of Henry et al. 2011 the tourmaline is classified as a dravite, with a representative formula shown to be (Na0.73Ca0.2380.032)(Mg2+2.913Fe2+0.057Ti4+0.030) (Al3+5.787Fe3+0.017Mg2+0.14)(Si6.013O18)(BO3)3(OH)3((OH,O)0.907F0.093). Rietveld analysis of powder diffraction data gives a = 15.9436(8) , c = 7.2126(7) and a unit cell volume of 1587.8 3. A polished thin section was cut perpendicular to the c-axis of one tourmaline crystal, which showed zoning from a dark brown core into a lighter rim into a thin darker rim and back into lighter zonation. Through the geochemical data, three key stages of crystal growth can be seen within this thin section. The first is the core stage which occurs from the dark core to the first colourless zone; the second is from this colourless zone increasing in brown colour to the outer limit before a sudden absence of colour is noted; the third is a sharp change from the end of the second and is entirely colourless. These events are the result of metamorphism and hydrothermal fluids resulting from nearby felsic intrusive plutons. Scanning electron microscope, and electron microprobe traverses across this cross-section revealed that the green colour is the result of iron present throughout the system while the brown colour is correlated with titanium content. Crystal inclusions in the tourmaline of chlorapatite, and zircon were identified by petrographic analysis and confirmed using scanning electron microscope data and occur within the third stage of formation.
Resumo:
The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.