2 resultados para Mechanical property improvement

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the anode in DSSCs. GLAD-fabricated TiO2 microstructures for the anode in a DSSC, consisting of vertical micro-columns, and combined vertical topped with tilted micro-columns are compared. The solar cell with the two-part microstructure shows the highest monochromatic incident photon to current efficiency with 20% improvement compared to the vertical microstructure, and the efficiency of the cell increases from 1.5% to 2% due to employing the scattering layer.