2 resultados para Mechanical behaviour

em QSpace: Queen's University - Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formulation of a geotechnical model and the associated prediction of the mechanical behaviour is a challenge engineers need to overcome in order to optimize tunnel design and meet project requirements. Special challenges arise in cases where rocks and rockmasses are susceptible to time-effects and time-dependent processes govern. Progressive rockmass deformation and instability, time-dependent overloading of support and delayed failures are commonly the result of time-dependent phenomena. The research work presented in this thesis serves as an attempt to provide more insight into the time-dependent behaviour of rocks. Emphasis is given on investigating and analyzing creep deformation and time-dependent stress relaxation phenomenon at the laboratory scale and in-depth analyses are presented. This thesis further develops the understanding of these phenomena and practical yet scientific tools for estimating and predicting the long-term strength and the maximum stress relaxation of rock materials are proposed. The identification of the existence of three distinct behavioural stages during stress relaxation is presented and discussed. The main observations associated with time-dependent behaviour are employed in numerical analyses and applied at the tunnel scale. A new approach for simulating and capturing the time-dependent behaviour coupled with the tunnel advancement effect is also developed and analyzed. Guidance is provided to increase the understanding of the support-rockmass interaction and the main implications and significance of time-dependent behaviour associated with rock tunnelling are discussed. The work presented in this thesis advances the scientific understanding of time-dependent rock and rockmass behaviour, increases the awareness of how such phenomena are captured numerically, and lays out a framework for dealing with such deformations when predicting tunnel deformations. Practical aspects of this thesis are also presented, which will increase their usage in the associated industries and close the gap between the scientific and industry communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron beam lithography (EBL) and focused ion beam (FIB) methods were developed in house to fabricate nanocrystalline nickel micro/nanopillars so to compare the effect of fabrication on plastic yielding. EBL was used to fabricate 3 μm and 5 μm thick poly-methyl methacrylate patterned substrates in which nickel pillars were grown by electroplating with height to diameter aspect ratios from 2:1 to 5:1. FIB milling was used to reduce larger grown pillars to sizes similar to EBL grown pillars. X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and FIB imaging were used to characterize the nickel pillars. The measured grain size of the pillars was 91±23 nm, with strong <110> and weaker <111> and <110> crystallographic texture in the growth. Load-controlled compression tests were conducted using a MicroMaterials nano-indenter equipped with a 10 μm flat punch at constant rates from 0.0015 to 0.03 mN/s on EBL grown pillars, and 0.0015 and 0.015 mN/s on FIB-milled pillars. The measured Young’s modulus ranged from 55 to 350 GPa for all pillars, agreeing with values in the literature. EBL grown pillars exhibited stochastic strain-bursts at slow loading rates, attributed to local micro yield events, followed by work hardening. Sharp yield points were also observed and attributed to the gold seed layer de-bonding between the nickel pillar and substrate due to the shear stress associated with end effects that arise from the substrate constraint. The onset of yield ranged from 108 to 1800 MPa, which is greater than bulk nickel, but within values given in the literature. FIB-milled pillars demonstrated stochastic yield behaviour at all loading rates tested, yielding between 320 and 625 MPa. Deformation was apparent at FIB-milled pillar tops, where the smallest cross-sectional area was measured, but still exhibited superior yield strength to bulk nickel. The gallium damage at the outer surface of the pillars likely aids in dislocation nucleation and plasticity, leading to lower yield strengths than for the EBL pillars. Thermal drift, substrate effects, and noise due to vibrations within the indenter system contributed to variance and inconsistency in the data.