2 resultados para Mechanical Attrition Treatment

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the analysis of data from randomized trials which offer a sequence of interventions and suffer from a variety of problems in implementation. In experiments that provide treatment in multiple periods (T>1), subjects have up to 2^{T}-1 counterfactual outcomes to be estimated to determine the full sequence of causal effects from the study. Traditional program evaluation and non-experimental estimators are unable to recover parameters of interest to policy makers in this setting, particularly if there is non-ignorable attrition. We examine these issues in the context of Tennessee's highly influential randomized class size study, Project STAR. We demonstrate how a researcher can estimate the full sequence of dynamic treatment effects using a sequential difference in difference strategy that accounts for attrition due to observables using inverse probability weighting M-estimators. These estimates allow us to recover the structural parameters of the small class effects in the underlying education production function and construct dynamic average treatment effects. We present a complete and different picture of the effectiveness of reduced class size and find that accounting for both attrition due to observables and selection due to unobservable is crucial and necessary with data from Project STAR

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.