2 resultados para Maple Bluff
em QSpace: Queen's University - Canada
Resumo:
An all fiber-optical method to monitor densities and viscosities of liquids utilizing a steel cantilever (4 x 0.3 x 0.08 cm3) is presented. The actuation is performed by photothermally heating the cantilever at its base with an intensity-modulated 808 nm diode laser. The cantilever vibrations are picked up by an in-fiber Fabry Perot cavity sensor attached along the length of the cantilever. The fluid properties can be related to the resonance characteristics of the cantilever, e.g. a shift in the resonance frequency corresponds to a change in fluid density, and the width of the resonance peak gives information on the dynamic viscosity after calibration of the system. Aqueous glycerol, sucrose and ethanol samples in the range of 0.79–1.32 gcm−3 (density) and 0.89–702 mPas (viscosity) were used to investigate the limits of the sensor. A good agreement with literature values could be found with an average deviation of around 10 % for the dynamic viscosities, and 5–16 % for the mass densities. A variety of clear and opaque commercial spirits and an unknown viscous sample, e.g. home-made maple syrup, were analyzed and compared to literature values. The unique detection mechanism allows for the characterization of opaque samples and is superior to conventional microcantilever sensors. The method is expected to be beneficial in various industrial sectors such as quality control of food samples.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.